This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a local isomorphism of graphs. (Contributed by AV, 21-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grlimprop.v | |- V = ( Vtx ` G ) |
|
| grlimprop.w | |- W = ( Vtx ` H ) |
||
| Assertion | grlimprop | |- ( F e. ( G GraphLocIso H ) -> ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlimprop.v | |- V = ( Vtx ` G ) |
|
| 2 | grlimprop.w | |- W = ( Vtx ` H ) |
|
| 3 | grlimdmrel | |- Rel dom GraphLocIso |
|
| 4 | 3 | ovrcl | |- ( F e. ( G GraphLocIso H ) -> ( G e. _V /\ H e. _V ) ) |
| 5 | 4 | simpld | |- ( F e. ( G GraphLocIso H ) -> G e. _V ) |
| 6 | 4 | simprd | |- ( F e. ( G GraphLocIso H ) -> H e. _V ) |
| 7 | id | |- ( F e. ( G GraphLocIso H ) -> F e. ( G GraphLocIso H ) ) |
|
| 8 | 5 6 7 | 3jca | |- ( F e. ( G GraphLocIso H ) -> ( G e. _V /\ H e. _V /\ F e. ( G GraphLocIso H ) ) ) |
| 9 | 1 2 | isgrlim | |- ( ( G e. _V /\ H e. _V /\ F e. ( G GraphLocIso H ) ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) ) |
| 10 | 9 | biimpd | |- ( ( G e. _V /\ H e. _V /\ F e. ( G GraphLocIso H ) ) -> ( F e. ( G GraphLocIso H ) -> ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) ) |
| 11 | 8 10 | mpcom | |- ( F e. ( G GraphLocIso H ) -> ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) |