This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a cyclic group, which is a group with an element x , called the generator of the group, such that all elements in the group are multiples of x . A generator is usually not unique. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cyg | |- CycGrp = { g e. Grp | E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccyg | |- CycGrp |
|
| 1 | vg | |- g |
|
| 2 | cgrp | |- Grp |
|
| 3 | vx | |- x |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- g |
| 6 | 5 4 | cfv | |- ( Base ` g ) |
| 7 | vn | |- n |
|
| 8 | cz | |- ZZ |
|
| 9 | 7 | cv | |- n |
| 10 | cmg | |- .g |
|
| 11 | 5 10 | cfv | |- ( .g ` g ) |
| 12 | 3 | cv | |- x |
| 13 | 9 12 11 | co | |- ( n ( .g ` g ) x ) |
| 14 | 7 8 13 | cmpt | |- ( n e. ZZ |-> ( n ( .g ` g ) x ) ) |
| 15 | 14 | crn | |- ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) |
| 16 | 15 6 | wceq | |- ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) |
| 17 | 16 3 6 | wrex | |- E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) |
| 18 | 17 1 2 | crab | |- { g e. Grp | E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) } |
| 19 | 0 18 | wceq | |- CycGrp = { g e. Grp | E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) } |