This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is closed iff it contains its closure. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
| Assertion | mrcidb2 | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( U e. C <-> ( F ` U ) C_ U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
| 2 | 1 | mrcidb | |- ( C e. ( Moore ` X ) -> ( U e. C <-> ( F ` U ) = U ) ) |
| 3 | 2 | adantr | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( U e. C <-> ( F ` U ) = U ) ) |
| 4 | eqss | |- ( ( F ` U ) = U <-> ( ( F ` U ) C_ U /\ U C_ ( F ` U ) ) ) |
|
| 5 | 1 | mrcssid | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> U C_ ( F ` U ) ) |
| 6 | 5 | biantrud | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( ( F ` U ) C_ U <-> ( ( F ` U ) C_ U /\ U C_ ( F ` U ) ) ) ) |
| 7 | 4 6 | bitr4id | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( ( F ` U ) = U <-> ( F ` U ) C_ U ) ) |
| 8 | 3 7 | bitrd | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( U e. C <-> ( F ` U ) C_ U ) ) |