This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of an irrational number and a rational number is irrational. (Contributed by NM, 7-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | irradd | |- ( ( A e. ( RR \ QQ ) /\ B e. QQ ) -> ( A + B ) e. ( RR \ QQ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | |- ( A e. ( RR \ QQ ) <-> ( A e. RR /\ -. A e. QQ ) ) |
|
| 2 | qre | |- ( B e. QQ -> B e. RR ) |
|
| 3 | readdcl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
|
| 4 | 2 3 | sylan2 | |- ( ( A e. RR /\ B e. QQ ) -> ( A + B ) e. RR ) |
| 5 | 4 | adantlr | |- ( ( ( A e. RR /\ -. A e. QQ ) /\ B e. QQ ) -> ( A + B ) e. RR ) |
| 6 | qsubcl | |- ( ( ( A + B ) e. QQ /\ B e. QQ ) -> ( ( A + B ) - B ) e. QQ ) |
|
| 7 | 6 | expcom | |- ( B e. QQ -> ( ( A + B ) e. QQ -> ( ( A + B ) - B ) e. QQ ) ) |
| 8 | 7 | adantl | |- ( ( A e. RR /\ B e. QQ ) -> ( ( A + B ) e. QQ -> ( ( A + B ) - B ) e. QQ ) ) |
| 9 | recn | |- ( A e. RR -> A e. CC ) |
|
| 10 | qcn | |- ( B e. QQ -> B e. CC ) |
|
| 11 | pncan | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - B ) = A ) |
|
| 12 | 9 10 11 | syl2an | |- ( ( A e. RR /\ B e. QQ ) -> ( ( A + B ) - B ) = A ) |
| 13 | 12 | eleq1d | |- ( ( A e. RR /\ B e. QQ ) -> ( ( ( A + B ) - B ) e. QQ <-> A e. QQ ) ) |
| 14 | 8 13 | sylibd | |- ( ( A e. RR /\ B e. QQ ) -> ( ( A + B ) e. QQ -> A e. QQ ) ) |
| 15 | 14 | con3d | |- ( ( A e. RR /\ B e. QQ ) -> ( -. A e. QQ -> -. ( A + B ) e. QQ ) ) |
| 16 | 15 | ex | |- ( A e. RR -> ( B e. QQ -> ( -. A e. QQ -> -. ( A + B ) e. QQ ) ) ) |
| 17 | 16 | com23 | |- ( A e. RR -> ( -. A e. QQ -> ( B e. QQ -> -. ( A + B ) e. QQ ) ) ) |
| 18 | 17 | imp31 | |- ( ( ( A e. RR /\ -. A e. QQ ) /\ B e. QQ ) -> -. ( A + B ) e. QQ ) |
| 19 | 5 18 | jca | |- ( ( ( A e. RR /\ -. A e. QQ ) /\ B e. QQ ) -> ( ( A + B ) e. RR /\ -. ( A + B ) e. QQ ) ) |
| 20 | 1 19 | sylanb | |- ( ( A e. ( RR \ QQ ) /\ B e. QQ ) -> ( ( A + B ) e. RR /\ -. ( A + B ) e. QQ ) ) |
| 21 | eldif | |- ( ( A + B ) e. ( RR \ QQ ) <-> ( ( A + B ) e. RR /\ -. ( A + B ) e. QQ ) ) |
|
| 22 | 20 21 | sylibr | |- ( ( A e. ( RR \ QQ ) /\ B e. QQ ) -> ( A + B ) e. ( RR \ QQ ) ) |