This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The LUB of the empty set is the empty set if it is contained. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipoglb0.i | |- I = ( toInc ` F ) |
|
| ipolub00.u | |- ( ph -> U = ( lub ` I ) ) |
||
| ipolub00.f | |- ( ph -> (/) e. F ) |
||
| Assertion | ipolub00 | |- ( ph -> ( U ` (/) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipoglb0.i | |- I = ( toInc ` F ) |
|
| 2 | ipolub00.u | |- ( ph -> U = ( lub ` I ) ) |
|
| 3 | ipolub00.f | |- ( ph -> (/) e. F ) |
|
| 4 | 2 | adantr | |- ( ( ph /\ F e. _V ) -> U = ( lub ` I ) ) |
| 5 | int0el | |- ( (/) e. F -> |^| F = (/) ) |
|
| 6 | 3 5 | syl | |- ( ph -> |^| F = (/) ) |
| 7 | 6 3 | eqeltrd | |- ( ph -> |^| F e. F ) |
| 8 | 7 | adantr | |- ( ( ph /\ F e. _V ) -> |^| F e. F ) |
| 9 | simpr | |- ( ( ph /\ F e. _V ) -> F e. _V ) |
|
| 10 | 1 4 8 9 | ipolub0 | |- ( ( ph /\ F e. _V ) -> ( U ` (/) ) = |^| F ) |
| 11 | 6 | adantr | |- ( ( ph /\ F e. _V ) -> |^| F = (/) ) |
| 12 | 10 11 | eqtrd | |- ( ( ph /\ F e. _V ) -> ( U ` (/) ) = (/) ) |
| 13 | 2 | adantr | |- ( ( ph /\ -. F e. _V ) -> U = ( lub ` I ) ) |
| 14 | fvprc | |- ( -. F e. _V -> ( toInc ` F ) = (/) ) |
|
| 15 | 14 | adantl | |- ( ( ph /\ -. F e. _V ) -> ( toInc ` F ) = (/) ) |
| 16 | 1 15 | eqtrid | |- ( ( ph /\ -. F e. _V ) -> I = (/) ) |
| 17 | 16 | fveq2d | |- ( ( ph /\ -. F e. _V ) -> ( lub ` I ) = ( lub ` (/) ) ) |
| 18 | 13 17 | eqtrd | |- ( ( ph /\ -. F e. _V ) -> U = ( lub ` (/) ) ) |
| 19 | 18 | fveq1d | |- ( ( ph /\ -. F e. _V ) -> ( U ` (/) ) = ( ( lub ` (/) ) ` (/) ) ) |
| 20 | rex0 | |- -. E. x e. (/) ( A. y e. (/) y ( le ` (/) ) x /\ A. z e. (/) ( A. y e. (/) y ( le ` (/) ) z -> x ( le ` (/) ) z ) ) |
|
| 21 | 20 | intnan | |- -. ( (/) C_ (/) /\ E. x e. (/) ( A. y e. (/) y ( le ` (/) ) x /\ A. z e. (/) ( A. y e. (/) y ( le ` (/) ) z -> x ( le ` (/) ) z ) ) ) |
| 22 | base0 | |- (/) = ( Base ` (/) ) |
|
| 23 | eqid | |- ( le ` (/) ) = ( le ` (/) ) |
|
| 24 | eqid | |- ( lub ` (/) ) = ( lub ` (/) ) |
|
| 25 | biid | |- ( ( A. y e. (/) y ( le ` (/) ) x /\ A. z e. (/) ( A. y e. (/) y ( le ` (/) ) z -> x ( le ` (/) ) z ) ) <-> ( A. y e. (/) y ( le ` (/) ) x /\ A. z e. (/) ( A. y e. (/) y ( le ` (/) ) z -> x ( le ` (/) ) z ) ) ) |
|
| 26 | 0pos | |- (/) e. Poset |
|
| 27 | 26 | a1i | |- ( ( ph /\ -. F e. _V ) -> (/) e. Poset ) |
| 28 | 22 23 24 25 27 | lubeldm2 | |- ( ( ph /\ -. F e. _V ) -> ( (/) e. dom ( lub ` (/) ) <-> ( (/) C_ (/) /\ E. x e. (/) ( A. y e. (/) y ( le ` (/) ) x /\ A. z e. (/) ( A. y e. (/) y ( le ` (/) ) z -> x ( le ` (/) ) z ) ) ) ) ) |
| 29 | 21 28 | mtbiri | |- ( ( ph /\ -. F e. _V ) -> -. (/) e. dom ( lub ` (/) ) ) |
| 30 | ndmfv | |- ( -. (/) e. dom ( lub ` (/) ) -> ( ( lub ` (/) ) ` (/) ) = (/) ) |
|
| 31 | 29 30 | syl | |- ( ( ph /\ -. F e. _V ) -> ( ( lub ` (/) ) ` (/) ) = (/) ) |
| 32 | 19 31 | eqtrd | |- ( ( ph /\ -. F e. _V ) -> ( U ` (/) ) = (/) ) |
| 33 | 12 32 | pm2.61dan | |- ( ph -> ( U ` (/) ) = (/) ) |