This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The LUB of the empty set is the empty set if it is contained. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipoglb0.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| ipolub00.u | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐼 ) ) | ||
| ipolub00.f | ⊢ ( 𝜑 → ∅ ∈ 𝐹 ) | ||
| Assertion | ipolub00 | ⊢ ( 𝜑 → ( 𝑈 ‘ ∅ ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipoglb0.i | ⊢ 𝐼 = ( toInc ‘ 𝐹 ) | |
| 2 | ipolub00.u | ⊢ ( 𝜑 → 𝑈 = ( lub ‘ 𝐼 ) ) | |
| 3 | ipolub00.f | ⊢ ( 𝜑 → ∅ ∈ 𝐹 ) | |
| 4 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → 𝑈 = ( lub ‘ 𝐼 ) ) |
| 5 | int0el | ⊢ ( ∅ ∈ 𝐹 → ∩ 𝐹 = ∅ ) | |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → ∩ 𝐹 = ∅ ) |
| 7 | 6 3 | eqeltrd | ⊢ ( 𝜑 → ∩ 𝐹 ∈ 𝐹 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ∩ 𝐹 ∈ 𝐹 ) |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → 𝐹 ∈ V ) | |
| 10 | 1 4 8 9 | ipolub0 | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ( 𝑈 ‘ ∅ ) = ∩ 𝐹 ) |
| 11 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ∩ 𝐹 = ∅ ) |
| 12 | 10 11 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐹 ∈ V ) → ( 𝑈 ‘ ∅ ) = ∅ ) |
| 13 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → 𝑈 = ( lub ‘ 𝐼 ) ) |
| 14 | fvprc | ⊢ ( ¬ 𝐹 ∈ V → ( toInc ‘ 𝐹 ) = ∅ ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( toInc ‘ 𝐹 ) = ∅ ) |
| 16 | 1 15 | eqtrid | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → 𝐼 = ∅ ) |
| 17 | 16 | fveq2d | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( lub ‘ 𝐼 ) = ( lub ‘ ∅ ) ) |
| 18 | 13 17 | eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → 𝑈 = ( lub ‘ ∅ ) ) |
| 19 | 18 | fveq1d | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( 𝑈 ‘ ∅ ) = ( ( lub ‘ ∅ ) ‘ ∅ ) ) |
| 20 | rex0 | ⊢ ¬ ∃ 𝑥 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑥 ∧ ∀ 𝑧 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑧 → 𝑥 ( le ‘ ∅ ) 𝑧 ) ) | |
| 21 | 20 | intnan | ⊢ ¬ ( ∅ ⊆ ∅ ∧ ∃ 𝑥 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑥 ∧ ∀ 𝑧 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑧 → 𝑥 ( le ‘ ∅ ) 𝑧 ) ) ) |
| 22 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 23 | eqid | ⊢ ( le ‘ ∅ ) = ( le ‘ ∅ ) | |
| 24 | eqid | ⊢ ( lub ‘ ∅ ) = ( lub ‘ ∅ ) | |
| 25 | biid | ⊢ ( ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑥 ∧ ∀ 𝑧 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑧 → 𝑥 ( le ‘ ∅ ) 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑥 ∧ ∀ 𝑧 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑧 → 𝑥 ( le ‘ ∅ ) 𝑧 ) ) ) | |
| 26 | 0pos | ⊢ ∅ ∈ Poset | |
| 27 | 26 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ∅ ∈ Poset ) |
| 28 | 22 23 24 25 27 | lubeldm2 | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( ∅ ∈ dom ( lub ‘ ∅ ) ↔ ( ∅ ⊆ ∅ ∧ ∃ 𝑥 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑥 ∧ ∀ 𝑧 ∈ ∅ ( ∀ 𝑦 ∈ ∅ 𝑦 ( le ‘ ∅ ) 𝑧 → 𝑥 ( le ‘ ∅ ) 𝑧 ) ) ) ) ) |
| 29 | 21 28 | mtbiri | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ¬ ∅ ∈ dom ( lub ‘ ∅ ) ) |
| 30 | ndmfv | ⊢ ( ¬ ∅ ∈ dom ( lub ‘ ∅ ) → ( ( lub ‘ ∅ ) ‘ ∅ ) = ∅ ) | |
| 31 | 29 30 | syl | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( ( lub ‘ ∅ ) ‘ ∅ ) = ∅ ) |
| 32 | 19 31 | eqtrd | ⊢ ( ( 𝜑 ∧ ¬ 𝐹 ∈ V ) → ( 𝑈 ‘ ∅ ) = ∅ ) |
| 33 | 12 32 | pm2.61dan | ⊢ ( 𝜑 → ( 𝑈 ‘ ∅ ) = ∅ ) |