This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of two adiacent closed intervals is a singleton. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccintsng | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) -> ( ( A [,] B ) i^i ( B [,] C ) ) = { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> A e. RR* ) |
|
| 2 | simpl2 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> B e. RR* ) |
|
| 3 | simprl | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> x e. ( A [,] B ) ) |
|
| 4 | iccleub | |- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> x <_ B ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> x <_ B ) |
| 6 | simpl3 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> C e. RR* ) |
|
| 7 | simprr | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> x e. ( B [,] C ) ) |
|
| 8 | iccgelb | |- ( ( B e. RR* /\ C e. RR* /\ x e. ( B [,] C ) ) -> B <_ x ) |
|
| 9 | 2 6 7 8 | syl3anc | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> B <_ x ) |
| 10 | eliccxr | |- ( x e. ( A [,] B ) -> x e. RR* ) |
|
| 11 | 3 10 | syl | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> x e. RR* ) |
| 12 | 11 2 | jca | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> ( x e. RR* /\ B e. RR* ) ) |
| 13 | xrletri3 | |- ( ( x e. RR* /\ B e. RR* ) -> ( x = B <-> ( x <_ B /\ B <_ x ) ) ) |
|
| 14 | 12 13 | syl | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> ( x = B <-> ( x <_ B /\ B <_ x ) ) ) |
| 15 | 5 9 14 | mpbir2and | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) -> x = B ) |
| 16 | 15 | ex | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) -> x = B ) ) |
| 17 | 16 | adantr | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) -> ( ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) -> x = B ) ) |
| 18 | simpll1 | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> A e. RR* ) |
|
| 19 | simpll2 | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> B e. RR* ) |
|
| 20 | simplrl | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> A <_ B ) |
|
| 21 | simpr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> x = B ) |
|
| 22 | simpr | |- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ x = B ) -> x = B ) |
|
| 23 | ubicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
|
| 24 | 23 | adantr | |- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ x = B ) -> B e. ( A [,] B ) ) |
| 25 | 22 24 | eqeltrd | |- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ x = B ) -> x e. ( A [,] B ) ) |
| 26 | 18 19 20 21 25 | syl31anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> x e. ( A [,] B ) ) |
| 27 | simpll3 | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> C e. RR* ) |
|
| 28 | simplrr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> B <_ C ) |
|
| 29 | simpr | |- ( ( ( B e. RR* /\ C e. RR* /\ B <_ C ) /\ x = B ) -> x = B ) |
|
| 30 | lbicc2 | |- ( ( B e. RR* /\ C e. RR* /\ B <_ C ) -> B e. ( B [,] C ) ) |
|
| 31 | 30 | adantr | |- ( ( ( B e. RR* /\ C e. RR* /\ B <_ C ) /\ x = B ) -> B e. ( B [,] C ) ) |
| 32 | 29 31 | eqeltrd | |- ( ( ( B e. RR* /\ C e. RR* /\ B <_ C ) /\ x = B ) -> x e. ( B [,] C ) ) |
| 33 | 19 27 28 21 32 | syl31anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> x e. ( B [,] C ) ) |
| 34 | 26 33 | jca | |- ( ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) /\ x = B ) -> ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) |
| 35 | 34 | ex | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) -> ( x = B -> ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) ) |
| 36 | 17 35 | impbid | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) -> ( ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) <-> x = B ) ) |
| 37 | elin | |- ( x e. ( ( A [,] B ) i^i ( B [,] C ) ) <-> ( x e. ( A [,] B ) /\ x e. ( B [,] C ) ) ) |
|
| 38 | velsn | |- ( x e. { B } <-> x = B ) |
|
| 39 | 36 37 38 | 3bitr4g | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) -> ( x e. ( ( A [,] B ) i^i ( B [,] C ) ) <-> x e. { B } ) ) |
| 40 | 39 | eqrdv | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A <_ B /\ B <_ C ) ) -> ( ( A [,] B ) i^i ( B [,] C ) ) = { B } ) |