This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an open interval of extended reals. (Contributed by NM, 17-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elioo5 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A (,) B ) <-> ( A < C /\ C < B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioo1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR* /\ A < C /\ C < B ) ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A (,) B ) <-> ( C e. RR* /\ A < C /\ C < B ) ) ) |
| 3 | 3anass | |- ( ( C e. RR* /\ A < C /\ C < B ) <-> ( C e. RR* /\ ( A < C /\ C < B ) ) ) |
|
| 4 | 3 | baibr | |- ( C e. RR* -> ( ( A < C /\ C < B ) <-> ( C e. RR* /\ A < C /\ C < B ) ) ) |
| 5 | 4 | 3ad2ant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < C /\ C < B ) <-> ( C e. RR* /\ A < C /\ C < B ) ) ) |
| 6 | 2 5 | bitr4d | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( C e. ( A (,) B ) <-> ( A < C /\ C < B ) ) ) |