This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 10-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inxpxrn | |- ( ( R i^i ( A X. B ) ) |X. ( S i^i ( A X. C ) ) ) = ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnrel | |- Rel ( ( R i^i ( A X. B ) ) |X. ( S i^i ( A X. C ) ) ) |
|
| 2 | relinxp | |- Rel ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) |
|
| 3 | brxrn2 | |- ( u e. _V -> ( u ( R |X. S ) x <-> E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) ) |
|
| 4 | 3 | elv | |- ( u ( R |X. S ) x <-> E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) |
| 5 | 4 | anbi2i | |- ( ( u e. A /\ u ( R |X. S ) x ) <-> ( u e. A /\ E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) ) |
| 6 | 5 | anbi2i | |- ( ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) <-> ( x e. ( B X. C ) /\ ( u e. A /\ E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
| 7 | xrninxp2 | |- ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) = { <. u , x >. | ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) } |
|
| 8 | 7 | brabidgaw | |- ( u ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) x <-> ( x e. ( B X. C ) /\ ( u e. A /\ u ( R |X. S ) x ) ) ) |
| 9 | brxrn2 | |- ( u e. _V -> ( u ( ( R i^i ( A X. B ) ) |X. ( S i^i ( A X. C ) ) ) x <-> E. y E. z ( x = <. y , z >. /\ u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) ) |
|
| 10 | 9 | elv | |- ( u ( ( R i^i ( A X. B ) ) |X. ( S i^i ( A X. C ) ) ) x <-> E. y E. z ( x = <. y , z >. /\ u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) |
| 11 | 3anass | |- ( ( x = <. y , z >. /\ u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) <-> ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) ) |
|
| 12 | 11 | 2exbii | |- ( E. y E. z ( x = <. y , z >. /\ u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) <-> E. y E. z ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) ) |
| 13 | brinxp2 | |- ( u ( R i^i ( A X. B ) ) y <-> ( ( u e. A /\ y e. B ) /\ u R y ) ) |
|
| 14 | brinxp2 | |- ( u ( S i^i ( A X. C ) ) z <-> ( ( u e. A /\ z e. C ) /\ u S z ) ) |
|
| 15 | 13 14 | anbi12i | |- ( ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) <-> ( ( ( u e. A /\ y e. B ) /\ u R y ) /\ ( ( u e. A /\ z e. C ) /\ u S z ) ) ) |
| 16 | anan | |- ( ( ( ( u e. A /\ y e. B ) /\ u R y ) /\ ( ( u e. A /\ z e. C ) /\ u S z ) ) <-> ( ( y e. B /\ z e. C ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) |
|
| 17 | 15 16 | bitri | |- ( ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) <-> ( ( y e. B /\ z e. C ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) |
| 18 | 17 | anbi2i | |- ( ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) <-> ( x = <. y , z >. /\ ( ( y e. B /\ z e. C ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) ) |
| 19 | anass | |- ( ( ( x = <. y , z >. /\ ( y e. B /\ z e. C ) ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) <-> ( x = <. y , z >. /\ ( ( y e. B /\ z e. C ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) ) |
|
| 20 | eqelb | |- ( ( x = <. y , z >. /\ x e. ( B X. C ) ) <-> ( x = <. y , z >. /\ <. y , z >. e. ( B X. C ) ) ) |
|
| 21 | opelxp | |- ( <. y , z >. e. ( B X. C ) <-> ( y e. B /\ z e. C ) ) |
|
| 22 | 21 | anbi2i | |- ( ( x = <. y , z >. /\ <. y , z >. e. ( B X. C ) ) <-> ( x = <. y , z >. /\ ( y e. B /\ z e. C ) ) ) |
| 23 | 20 22 | bitr2i | |- ( ( x = <. y , z >. /\ ( y e. B /\ z e. C ) ) <-> ( x = <. y , z >. /\ x e. ( B X. C ) ) ) |
| 24 | 23 | anbi1i | |- ( ( ( x = <. y , z >. /\ ( y e. B /\ z e. C ) ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) <-> ( ( x = <. y , z >. /\ x e. ( B X. C ) ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) |
| 25 | 18 19 24 | 3bitr2i | |- ( ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) <-> ( ( x = <. y , z >. /\ x e. ( B X. C ) ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) |
| 26 | ancom | |- ( ( x = <. y , z >. /\ x e. ( B X. C ) ) <-> ( x e. ( B X. C ) /\ x = <. y , z >. ) ) |
|
| 27 | 26 | anbi1i | |- ( ( ( x = <. y , z >. /\ x e. ( B X. C ) ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) <-> ( ( x e. ( B X. C ) /\ x = <. y , z >. ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) |
| 28 | anass | |- ( ( ( x e. ( B X. C ) /\ x = <. y , z >. ) /\ ( u e. A /\ ( u R y /\ u S z ) ) ) <-> ( x e. ( B X. C ) /\ ( x = <. y , z >. /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) ) |
|
| 29 | 25 27 28 | 3bitri | |- ( ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) <-> ( x e. ( B X. C ) /\ ( x = <. y , z >. /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) ) |
| 30 | an12 | |- ( ( x = <. y , z >. /\ ( u e. A /\ ( u R y /\ u S z ) ) ) <-> ( u e. A /\ ( x = <. y , z >. /\ ( u R y /\ u S z ) ) ) ) |
|
| 31 | 3anass | |- ( ( x = <. y , z >. /\ u R y /\ u S z ) <-> ( x = <. y , z >. /\ ( u R y /\ u S z ) ) ) |
|
| 32 | 31 | anbi2i | |- ( ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) <-> ( u e. A /\ ( x = <. y , z >. /\ ( u R y /\ u S z ) ) ) ) |
| 33 | 30 32 | bitr4i | |- ( ( x = <. y , z >. /\ ( u e. A /\ ( u R y /\ u S z ) ) ) <-> ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) ) |
| 34 | 33 | anbi2i | |- ( ( x e. ( B X. C ) /\ ( x = <. y , z >. /\ ( u e. A /\ ( u R y /\ u S z ) ) ) ) <-> ( x e. ( B X. C ) /\ ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
| 35 | 29 34 | bitri | |- ( ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) <-> ( x e. ( B X. C ) /\ ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
| 36 | 35 | 2exbii | |- ( E. y E. z ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) <-> E. y E. z ( x e. ( B X. C ) /\ ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
| 37 | 19.42vv | |- ( E. y E. z ( x e. ( B X. C ) /\ ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) ) <-> ( x e. ( B X. C ) /\ E. y E. z ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
|
| 38 | 19.42vv | |- ( E. y E. z ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) <-> ( u e. A /\ E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) ) |
|
| 39 | 38 | anbi2i | |- ( ( x e. ( B X. C ) /\ E. y E. z ( u e. A /\ ( x = <. y , z >. /\ u R y /\ u S z ) ) ) <-> ( x e. ( B X. C ) /\ ( u e. A /\ E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
| 40 | 36 37 39 | 3bitri | |- ( E. y E. z ( x = <. y , z >. /\ ( u ( R i^i ( A X. B ) ) y /\ u ( S i^i ( A X. C ) ) z ) ) <-> ( x e. ( B X. C ) /\ ( u e. A /\ E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
| 41 | 10 12 40 | 3bitri | |- ( u ( ( R i^i ( A X. B ) ) |X. ( S i^i ( A X. C ) ) ) x <-> ( x e. ( B X. C ) /\ ( u e. A /\ E. y E. z ( x = <. y , z >. /\ u R y /\ u S z ) ) ) ) |
| 42 | 6 8 41 | 3bitr4ri | |- ( u ( ( R i^i ( A X. B ) ) |X. ( S i^i ( A X. C ) ) ) x <-> u ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) x ) |
| 43 | 1 2 42 | eqbrriv | |- ( ( R i^i ( A X. B ) ) |X. ( S i^i ( A X. C ) ) ) = ( ( R |X. S ) i^i ( A X. ( B X. C ) ) ) |