This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiple commutations in conjunction. (Contributed by Peter Mazsa, 7-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | anan | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ ( ( ph /\ th ) /\ ta ) ) <-> ( ( ps /\ th ) /\ ( ph /\ ( ch /\ ta ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ ( ( ph /\ th ) /\ ta ) ) <-> ( ( ( ph /\ ps ) /\ ( ph /\ th ) ) /\ ( ch /\ ta ) ) ) |
|
| 2 | anandi | |- ( ( ph /\ ( ps /\ th ) ) <-> ( ( ph /\ ps ) /\ ( ph /\ th ) ) ) |
|
| 3 | ancom | |- ( ( ph /\ ( ps /\ th ) ) <-> ( ( ps /\ th ) /\ ph ) ) |
|
| 4 | 2 3 | bitr3i | |- ( ( ( ph /\ ps ) /\ ( ph /\ th ) ) <-> ( ( ps /\ th ) /\ ph ) ) |
| 5 | 4 | anbi1i | |- ( ( ( ( ph /\ ps ) /\ ( ph /\ th ) ) /\ ( ch /\ ta ) ) <-> ( ( ( ps /\ th ) /\ ph ) /\ ( ch /\ ta ) ) ) |
| 6 | anass | |- ( ( ( ( ps /\ th ) /\ ph ) /\ ( ch /\ ta ) ) <-> ( ( ps /\ th ) /\ ( ph /\ ( ch /\ ta ) ) ) ) |
|
| 7 | 1 5 6 | 3bitri | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ ( ( ph /\ th ) /\ ta ) ) <-> ( ( ps /\ th ) /\ ( ph /\ ( ch /\ ta ) ) ) ) |