This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brcodir | |- ( ( A e. V /\ B e. W ) -> ( A ( `' R o. R ) B <-> E. z ( A R z /\ B R z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcog | |- ( ( A e. V /\ B e. W ) -> ( A ( `' R o. R ) B <-> E. z ( A R z /\ z `' R B ) ) ) |
|
| 2 | vex | |- z e. _V |
|
| 3 | brcnvg | |- ( ( z e. _V /\ B e. W ) -> ( z `' R B <-> B R z ) ) |
|
| 4 | 2 3 | mpan | |- ( B e. W -> ( z `' R B <-> B R z ) ) |
| 5 | 4 | anbi2d | |- ( B e. W -> ( ( A R z /\ z `' R B ) <-> ( A R z /\ B R z ) ) ) |
| 6 | 5 | adantl | |- ( ( A e. V /\ B e. W ) -> ( ( A R z /\ z `' R B ) <-> ( A R z /\ B R z ) ) ) |
| 7 | 6 | exbidv | |- ( ( A e. V /\ B e. W ) -> ( E. z ( A R z /\ z `' R B ) <-> E. z ( A R z /\ B R z ) ) ) |
| 8 | 1 7 | bitrd | |- ( ( A e. V /\ B e. W ) -> ( A ( `' R o. R ) B <-> E. z ( A R z /\ B R z ) ) ) |