This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of a class abstraction with an existentially quantified expression. Both x and y can be free in ph . (Contributed by NM, 29-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abrexex2.1 | |- A e. _V |
|
| abrexex2.2 | |- { y | ph } e. _V |
||
| Assertion | abexssex | |- { y | E. x ( x C_ A /\ ph ) } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abrexex2.1 | |- A e. _V |
|
| 2 | abrexex2.2 | |- { y | ph } e. _V |
|
| 3 | df-rex | |- ( E. x e. ~P A ph <-> E. x ( x e. ~P A /\ ph ) ) |
|
| 4 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 5 | 4 | anbi1i | |- ( ( x e. ~P A /\ ph ) <-> ( x C_ A /\ ph ) ) |
| 6 | 5 | exbii | |- ( E. x ( x e. ~P A /\ ph ) <-> E. x ( x C_ A /\ ph ) ) |
| 7 | 3 6 | bitri | |- ( E. x e. ~P A ph <-> E. x ( x C_ A /\ ph ) ) |
| 8 | 7 | abbii | |- { y | E. x e. ~P A ph } = { y | E. x ( x C_ A /\ ph ) } |
| 9 | 1 | pwex | |- ~P A e. _V |
| 10 | 9 2 | abrexex2 | |- { y | E. x e. ~P A ph } e. _V |
| 11 | 8 10 | eqeltrri | |- { y | E. x ( x C_ A /\ ph ) } e. _V |