This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The imaginary part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imcn2 | |- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( Im ` z ) - ( Im ` A ) ) ) < x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imf | |- Im : CC --> RR |
|
| 2 | ax-resscn | |- RR C_ CC |
|
| 3 | fss | |- ( ( Im : CC --> RR /\ RR C_ CC ) -> Im : CC --> CC ) |
|
| 4 | 1 2 3 | mp2an | |- Im : CC --> CC |
| 5 | imsub | |- ( ( z e. CC /\ A e. CC ) -> ( Im ` ( z - A ) ) = ( ( Im ` z ) - ( Im ` A ) ) ) |
|
| 6 | 5 | fveq2d | |- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( Im ` ( z - A ) ) ) = ( abs ` ( ( Im ` z ) - ( Im ` A ) ) ) ) |
| 7 | subcl | |- ( ( z e. CC /\ A e. CC ) -> ( z - A ) e. CC ) |
|
| 8 | absimle | |- ( ( z - A ) e. CC -> ( abs ` ( Im ` ( z - A ) ) ) <_ ( abs ` ( z - A ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( Im ` ( z - A ) ) ) <_ ( abs ` ( z - A ) ) ) |
| 10 | 6 9 | eqbrtrrd | |- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( ( Im ` z ) - ( Im ` A ) ) ) <_ ( abs ` ( z - A ) ) ) |
| 11 | 4 10 | cn1lem | |- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( Im ` z ) - ( Im ` A ) ) ) < x ) ) |