This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcn1lem.1 | |- Z = ( ZZ>= ` M ) |
|
| climcn1lem.2 | |- ( ph -> F ~~> A ) |
||
| climcn1lem.4 | |- ( ph -> G e. W ) |
||
| climcn1lem.5 | |- ( ph -> M e. ZZ ) |
||
| climcn1lem.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| climcn1lem.7 | |- H : CC --> CC |
||
| climcn1lem.8 | |- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( H ` z ) - ( H ` A ) ) ) < x ) ) |
||
| climcn1lem.9 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( H ` ( F ` k ) ) ) |
||
| Assertion | climcn1lem | |- ( ph -> G ~~> ( H ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcn1lem.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climcn1lem.2 | |- ( ph -> F ~~> A ) |
|
| 3 | climcn1lem.4 | |- ( ph -> G e. W ) |
|
| 4 | climcn1lem.5 | |- ( ph -> M e. ZZ ) |
|
| 5 | climcn1lem.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 6 | climcn1lem.7 | |- H : CC --> CC |
|
| 7 | climcn1lem.8 | |- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( H ` z ) - ( H ` A ) ) ) < x ) ) |
|
| 8 | climcn1lem.9 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( H ` ( F ` k ) ) ) |
|
| 9 | climcl | |- ( F ~~> A -> A e. CC ) |
|
| 10 | 2 9 | syl | |- ( ph -> A e. CC ) |
| 11 | 6 | ffvelcdmi | |- ( z e. CC -> ( H ` z ) e. CC ) |
| 12 | 11 | adantl | |- ( ( ph /\ z e. CC ) -> ( H ` z ) e. CC ) |
| 13 | 10 7 | sylan | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( H ` z ) - ( H ` A ) ) ) < x ) ) |
| 14 | 1 4 10 12 2 3 13 5 8 | climcn1 | |- ( ph -> G ~~> ( H ` A ) ) |