This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An image structure value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imasvalstr.u | |- U = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) |
|
| Assertion | imasvalstr | |- U Struct <. 1 , ; 1 2 >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasvalstr.u | |- U = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) |
|
| 2 | eqid | |- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) |
|
| 3 | 2 | ipsstr | |- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) Struct <. 1 , 8 >. |
| 4 | 9nn | |- 9 e. NN |
|
| 5 | tsetndx | |- ( TopSet ` ndx ) = 9 |
|
| 6 | 9lt10 | |- 9 < ; 1 0 |
|
| 7 | 10nn | |- ; 1 0 e. NN |
|
| 8 | plendx | |- ( le ` ndx ) = ; 1 0 |
|
| 9 | 1nn0 | |- 1 e. NN0 |
|
| 10 | 0nn0 | |- 0 e. NN0 |
|
| 11 | 2nn | |- 2 e. NN |
|
| 12 | 2pos | |- 0 < 2 |
|
| 13 | 9 10 11 12 | declt | |- ; 1 0 < ; 1 2 |
| 14 | 9 11 | decnncl | |- ; 1 2 e. NN |
| 15 | dsndx | |- ( dist ` ndx ) = ; 1 2 |
|
| 16 | 4 5 6 7 8 13 14 15 | strle3 | |- { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } Struct <. 9 , ; 1 2 >. |
| 17 | 8lt9 | |- 8 < 9 |
|
| 18 | 3 16 17 | strleun | |- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) Struct <. 1 , ; 1 2 >. |
| 19 | 1 18 | eqbrtri | |- U Struct <. 1 , ; 1 2 >. |