This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma to shorten proofs of ipsbase through ipsvsca . (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 29-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ipspart.a | |- A = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , I >. } ) |
|
| Assertion | ipsstr | |- A Struct <. 1 , 8 >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipspart.a | |- A = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , I >. } ) |
|
| 2 | eqid | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } |
|
| 3 | 2 | rngstr | |- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } Struct <. 1 , 3 >. |
| 4 | 5nn | |- 5 e. NN |
|
| 5 | scandx | |- ( Scalar ` ndx ) = 5 |
|
| 6 | 5lt6 | |- 5 < 6 |
|
| 7 | 6nn | |- 6 e. NN |
|
| 8 | vscandx | |- ( .s ` ndx ) = 6 |
|
| 9 | 6lt8 | |- 6 < 8 |
|
| 10 | 8nn | |- 8 e. NN |
|
| 11 | ipndx | |- ( .i ` ndx ) = 8 |
|
| 12 | 4 5 6 7 8 9 10 11 | strle3 | |- { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , I >. } Struct <. 5 , 8 >. |
| 13 | 3lt5 | |- 3 < 5 |
|
| 14 | 3 12 13 | strleun | |- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , I >. } ) Struct <. 1 , 8 >. |
| 15 | 1 14 | eqbrtri | |- A Struct <. 1 , 8 >. |