This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 30-Apr-2015) (Revised by Thierry Arnoux, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prdsvalstr | |- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) Struct <. 1 , ; 1 5 >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unass | |- ( ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) |
|
| 2 | eqid | |- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) = ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) |
|
| 3 | 2 | imasvalstr | |- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) Struct <. 1 , ; 1 2 >. |
| 4 | 1nn0 | |- 1 e. NN0 |
|
| 5 | 4nn | |- 4 e. NN |
|
| 6 | 4 5 | decnncl | |- ; 1 4 e. NN |
| 7 | homndx | |- ( Hom ` ndx ) = ; 1 4 |
|
| 8 | 4nn0 | |- 4 e. NN0 |
|
| 9 | 5nn | |- 5 e. NN |
|
| 10 | 4lt5 | |- 4 < 5 |
|
| 11 | 4 8 9 10 | declt | |- ; 1 4 < ; 1 5 |
| 12 | 4 9 | decnncl | |- ; 1 5 e. NN |
| 13 | ccondx | |- ( comp ` ndx ) = ; 1 5 |
|
| 14 | 6 7 11 12 13 | strle2 | |- { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } Struct <. ; 1 4 , ; 1 5 >. |
| 15 | 2nn0 | |- 2 e. NN0 |
|
| 16 | 2lt4 | |- 2 < 4 |
|
| 17 | 4 15 5 16 | declt | |- ; 1 2 < ; 1 4 |
| 18 | 3 14 17 | strleun | |- ( ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } ) u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) Struct <. 1 , ; 1 5 >. |
| 19 | 1 18 | eqbrtrri | |- ( ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( .r ` ndx ) , .X. >. } u. { <. ( Scalar ` ndx ) , S >. , <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) u. ( { <. ( TopSet ` ndx ) , O >. , <. ( le ` ndx ) , L >. , <. ( dist ` ndx ) , D >. } u. { <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .xb >. } ) ) Struct <. 1 , ; 1 5 >. |