This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015) (Revised by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasbas.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasbas.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasbas.f | |- ( ph -> F : V -onto-> B ) |
||
| imasbas.r | |- ( ph -> R e. Z ) |
||
| imasds.e | |- E = ( dist ` R ) |
||
| imasds.d | |- D = ( dist ` U ) |
||
| imasdsval.x | |- ( ph -> X e. B ) |
||
| imasdsval.y | |- ( ph -> Y e. B ) |
||
| imasdsval.s | |- S = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = X /\ ( F ` ( 2nd ` ( h ` n ) ) ) = Y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |
||
| Assertion | imasdsval | |- ( ph -> ( X D Y ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasbas.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasbas.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasbas.f | |- ( ph -> F : V -onto-> B ) |
|
| 4 | imasbas.r | |- ( ph -> R e. Z ) |
|
| 5 | imasds.e | |- E = ( dist ` R ) |
|
| 6 | imasds.d | |- D = ( dist ` U ) |
|
| 7 | imasdsval.x | |- ( ph -> X e. B ) |
|
| 8 | imasdsval.y | |- ( ph -> Y e. B ) |
|
| 9 | imasdsval.s | |- S = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = X /\ ( F ` ( 2nd ` ( h ` n ) ) ) = Y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |
|
| 10 | 1 2 3 4 5 6 | imasds | |- ( ph -> D = ( x e. B , y e. B |-> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) ) |
| 11 | simplrl | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> x = X ) |
|
| 12 | 11 | eqeq2d | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x <-> ( F ` ( 1st ` ( h ` 1 ) ) ) = X ) ) |
| 13 | simplrr | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> y = Y ) |
|
| 14 | 13 | eqeq2d | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> ( ( F ` ( 2nd ` ( h ` n ) ) ) = y <-> ( F ` ( 2nd ` ( h ` n ) ) ) = Y ) ) |
| 15 | 12 14 | 3anbi12d | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> ( ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) <-> ( ( F ` ( 1st ` ( h ` 1 ) ) ) = X /\ ( F ` ( 2nd ` ( h ` n ) ) ) = Y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) ) ) |
| 16 | 15 | rabbidv | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = X /\ ( F ` ( 2nd ` ( h ` n ) ) ) = Y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } ) |
| 17 | 16 9 | eqtr4di | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } = S ) |
| 18 | 17 | mpteq1d | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) = ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
| 19 | 18 | rneqd | |- ( ( ( ph /\ ( x = X /\ y = Y ) ) /\ n e. NN ) -> ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) = ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
| 20 | 19 | iuneq2dv | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) = U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
| 21 | 20 | infeq1d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> inf ( U_ n e. NN ran ( g e. { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = x /\ ( F ` ( 2nd ` ( h ` n ) ) ) = y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) |
| 22 | xrltso | |- < Or RR* |
|
| 23 | 22 | infex | |- inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) e. _V |
| 24 | 23 | a1i | |- ( ph -> inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) e. _V ) |
| 25 | 10 21 7 8 24 | ovmpod | |- ( ph -> ( X D Y ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) |