This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hilbert space identity operator is a Hermitian operator. (Contributed by NM, 22-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idhmop | |- Iop e. HrmOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoif | |- Iop : ~H -1-1-onto-> ~H |
|
| 2 | f1of | |- ( Iop : ~H -1-1-onto-> ~H -> Iop : ~H --> ~H ) |
|
| 3 | 1 2 | ax-mp | |- Iop : ~H --> ~H |
| 4 | hoival | |- ( x e. ~H -> ( Iop ` x ) = x ) |
|
| 5 | 4 | eqcomd | |- ( x e. ~H -> x = ( Iop ` x ) ) |
| 6 | hoival | |- ( y e. ~H -> ( Iop ` y ) = y ) |
|
| 7 | 5 6 | oveqan12d | |- ( ( x e. ~H /\ y e. ~H ) -> ( x .ih ( Iop ` y ) ) = ( ( Iop ` x ) .ih y ) ) |
| 8 | 7 | rgen2 | |- A. x e. ~H A. y e. ~H ( x .ih ( Iop ` y ) ) = ( ( Iop ` x ) .ih y ) |
| 9 | elhmop | |- ( Iop e. HrmOp <-> ( Iop : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( Iop ` y ) ) = ( ( Iop ` x ) .ih y ) ) ) |
|
| 10 | 3 8 9 | mpbir2an | |- Iop e. HrmOp |