This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-idfu | |- idFunc = ( t e. Cat |-> [_ ( Base ` t ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cidfu | |- idFunc |
|
| 1 | vt | |- t |
|
| 2 | ccat | |- Cat |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- t |
| 5 | 4 3 | cfv | |- ( Base ` t ) |
| 6 | vb | |- b |
|
| 7 | cid | |- _I |
|
| 8 | 6 | cv | |- b |
| 9 | 7 8 | cres | |- ( _I |` b ) |
| 10 | vz | |- z |
|
| 11 | 8 8 | cxp | |- ( b X. b ) |
| 12 | chom | |- Hom |
|
| 13 | 4 12 | cfv | |- ( Hom ` t ) |
| 14 | 10 | cv | |- z |
| 15 | 14 13 | cfv | |- ( ( Hom ` t ) ` z ) |
| 16 | 7 15 | cres | |- ( _I |` ( ( Hom ` t ) ` z ) ) |
| 17 | 10 11 16 | cmpt | |- ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) |
| 18 | 9 17 | cop | |- <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. |
| 19 | 6 5 18 | csb | |- [_ ( Base ` t ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. |
| 20 | 1 2 19 | cmpt | |- ( t e. Cat |-> [_ ( Base ` t ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. ) |
| 21 | 0 20 | wceq | |- idFunc = ( t e. Cat |-> [_ ( Base ` t ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. ) |