This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A left-closed, right-open interval does not contain its upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icoub | |- ( A e. RR* -> -. B e. ( A [,) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. RR* /\ B e. ( A [,) B ) ) -> A e. RR* ) |
|
| 2 | icossxr | |- ( A [,) B ) C_ RR* |
|
| 3 | id | |- ( B e. ( A [,) B ) -> B e. ( A [,) B ) ) |
|
| 4 | 2 3 | sselid | |- ( B e. ( A [,) B ) -> B e. RR* ) |
| 5 | 4 | adantl | |- ( ( A e. RR* /\ B e. ( A [,) B ) ) -> B e. RR* ) |
| 6 | simpr | |- ( ( A e. RR* /\ B e. ( A [,) B ) ) -> B e. ( A [,) B ) ) |
|
| 7 | icoltub | |- ( ( A e. RR* /\ B e. RR* /\ B e. ( A [,) B ) ) -> B < B ) |
|
| 8 | 1 5 6 7 | syl3anc | |- ( ( A e. RR* /\ B e. ( A [,) B ) ) -> B < B ) |
| 9 | xrltnr | |- ( B e. RR* -> -. B < B ) |
|
| 10 | 4 9 | syl | |- ( B e. ( A [,) B ) -> -. B < B ) |
| 11 | 10 | adantl | |- ( ( A e. RR* /\ B e. ( A [,) B ) ) -> -. B < B ) |
| 12 | 8 11 | pm2.65da | |- ( A e. RR* -> -. B e. ( A [,) B ) ) |