This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A left-open right-closed interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iocopn.a | |- ( ph -> A e. RR* ) |
|
| iocopn.c | |- ( ph -> C e. RR* ) |
||
| iocopn.b | |- ( ph -> B e. RR ) |
||
| iocopn.k | |- K = ( topGen ` ran (,) ) |
||
| iocopn.j | |- J = ( K |`t ( A (,] B ) ) |
||
| iocopn.alec | |- ( ph -> A <_ C ) |
||
| iocopn.6 | |- ( ph -> B e. RR ) |
||
| Assertion | iocopn | |- ( ph -> ( C (,] B ) e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iocopn.a | |- ( ph -> A e. RR* ) |
|
| 2 | iocopn.c | |- ( ph -> C e. RR* ) |
|
| 3 | iocopn.b | |- ( ph -> B e. RR ) |
|
| 4 | iocopn.k | |- K = ( topGen ` ran (,) ) |
|
| 5 | iocopn.j | |- J = ( K |`t ( A (,] B ) ) |
|
| 6 | iocopn.alec | |- ( ph -> A <_ C ) |
|
| 7 | iocopn.6 | |- ( ph -> B e. RR ) |
|
| 8 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 9 | 4 8 | eqeltri | |- K e. Top |
| 10 | 9 | a1i | |- ( ph -> K e. Top ) |
| 11 | ovexd | |- ( ph -> ( A (,] B ) e. _V ) |
|
| 12 | iooretop | |- ( C (,) +oo ) e. ( topGen ` ran (,) ) |
|
| 13 | 12 4 | eleqtrri | |- ( C (,) +oo ) e. K |
| 14 | 13 | a1i | |- ( ph -> ( C (,) +oo ) e. K ) |
| 15 | elrestr | |- ( ( K e. Top /\ ( A (,] B ) e. _V /\ ( C (,) +oo ) e. K ) -> ( ( C (,) +oo ) i^i ( A (,] B ) ) e. ( K |`t ( A (,] B ) ) ) |
|
| 16 | 10 11 14 15 | syl3anc | |- ( ph -> ( ( C (,) +oo ) i^i ( A (,] B ) ) e. ( K |`t ( A (,] B ) ) ) |
| 17 | 2 | adantr | |- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> C e. RR* ) |
| 18 | 3 | rexrd | |- ( ph -> B e. RR* ) |
| 19 | 18 | adantr | |- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> B e. RR* ) |
| 20 | elinel1 | |- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. ( C (,) +oo ) ) |
|
| 21 | elioore | |- ( x e. ( C (,) +oo ) -> x e. RR ) |
|
| 22 | 20 21 | syl | |- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. RR ) |
| 23 | 22 | rexrd | |- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. RR* ) |
| 24 | 23 | adantl | |- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. RR* ) |
| 25 | pnfxr | |- +oo e. RR* |
|
| 26 | 25 | a1i | |- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> +oo e. RR* ) |
| 27 | 20 | adantl | |- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( C (,) +oo ) ) |
| 28 | ioogtlb | |- ( ( C e. RR* /\ +oo e. RR* /\ x e. ( C (,) +oo ) ) -> C < x ) |
|
| 29 | 17 26 27 28 | syl3anc | |- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> C < x ) |
| 30 | 1 | adantr | |- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> A e. RR* ) |
| 31 | elinel2 | |- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. ( A (,] B ) ) |
|
| 32 | 31 | adantl | |- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( A (,] B ) ) |
| 33 | iocleub | |- ( ( A e. RR* /\ B e. RR* /\ x e. ( A (,] B ) ) -> x <_ B ) |
|
| 34 | 30 19 32 33 | syl3anc | |- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x <_ B ) |
| 35 | 17 19 24 29 34 | eliocd | |- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( C (,] B ) ) |
| 36 | 2 | adantr | |- ( ( ph /\ x e. ( C (,] B ) ) -> C e. RR* ) |
| 37 | 25 | a1i | |- ( ( ph /\ x e. ( C (,] B ) ) -> +oo e. RR* ) |
| 38 | iocssre | |- ( ( C e. RR* /\ B e. RR ) -> ( C (,] B ) C_ RR ) |
|
| 39 | 2 7 38 | syl2anc | |- ( ph -> ( C (,] B ) C_ RR ) |
| 40 | 39 | sselda | |- ( ( ph /\ x e. ( C (,] B ) ) -> x e. RR ) |
| 41 | 18 | adantr | |- ( ( ph /\ x e. ( C (,] B ) ) -> B e. RR* ) |
| 42 | simpr | |- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( C (,] B ) ) |
|
| 43 | iocgtlb | |- ( ( C e. RR* /\ B e. RR* /\ x e. ( C (,] B ) ) -> C < x ) |
|
| 44 | 36 41 42 43 | syl3anc | |- ( ( ph /\ x e. ( C (,] B ) ) -> C < x ) |
| 45 | 40 | ltpnfd | |- ( ( ph /\ x e. ( C (,] B ) ) -> x < +oo ) |
| 46 | 36 37 40 44 45 | eliood | |- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( C (,) +oo ) ) |
| 47 | 1 | adantr | |- ( ( ph /\ x e. ( C (,] B ) ) -> A e. RR* ) |
| 48 | 40 | rexrd | |- ( ( ph /\ x e. ( C (,] B ) ) -> x e. RR* ) |
| 49 | 6 | adantr | |- ( ( ph /\ x e. ( C (,] B ) ) -> A <_ C ) |
| 50 | 47 36 48 49 44 | xrlelttrd | |- ( ( ph /\ x e. ( C (,] B ) ) -> A < x ) |
| 51 | iocleub | |- ( ( C e. RR* /\ B e. RR* /\ x e. ( C (,] B ) ) -> x <_ B ) |
|
| 52 | 36 41 42 51 | syl3anc | |- ( ( ph /\ x e. ( C (,] B ) ) -> x <_ B ) |
| 53 | 47 41 48 50 52 | eliocd | |- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( A (,] B ) ) |
| 54 | 46 53 | elind | |- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) |
| 55 | 35 54 | impbida | |- ( ph -> ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) <-> x e. ( C (,] B ) ) ) |
| 56 | 55 | eqrdv | |- ( ph -> ( ( C (,) +oo ) i^i ( A (,] B ) ) = ( C (,] B ) ) |
| 57 | 5 | eqcomi | |- ( K |`t ( A (,] B ) ) = J |
| 58 | 57 | a1i | |- ( ph -> ( K |`t ( A (,] B ) ) = J ) |
| 59 | 16 56 58 | 3eltr3d | |- ( ph -> ( C (,] B ) e. J ) |