This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unbounded above open interval is open in the order topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iocpnfordt | |- ( A (,] +oo ) e. ( ordTop ` <_ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ran ( x e. RR* |-> ( x (,] +oo ) ) = ran ( x e. RR* |-> ( x (,] +oo ) ) |
|
| 2 | eqid | |- ran ( x e. RR* |-> ( -oo [,) x ) ) = ran ( x e. RR* |-> ( -oo [,) x ) ) |
|
| 3 | eqid | |- ran (,) = ran (,) |
|
| 4 | 1 2 3 | leordtval | |- ( ordTop ` <_ ) = ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) |
| 5 | letop | |- ( ordTop ` <_ ) e. Top |
|
| 6 | 4 5 | eqeltrri | |- ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) e. Top |
| 7 | tgclb | |- ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) e. TopBases <-> ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) e. Top ) |
|
| 8 | 6 7 | mpbir | |- ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) e. TopBases |
| 9 | bastg | |- ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) e. TopBases -> ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) C_ ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) ) |
|
| 10 | 8 9 | ax-mp | |- ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) C_ ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) |
| 11 | 10 4 | sseqtrri | |- ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) C_ ( ordTop ` <_ ) |
| 12 | ssun1 | |- ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) C_ ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) |
|
| 13 | ssun1 | |- ran ( x e. RR* |-> ( x (,] +oo ) ) C_ ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) |
|
| 14 | eqid | |- ( A (,] +oo ) = ( A (,] +oo ) |
|
| 15 | oveq1 | |- ( x = A -> ( x (,] +oo ) = ( A (,] +oo ) ) |
|
| 16 | 15 | rspceeqv | |- ( ( A e. RR* /\ ( A (,] +oo ) = ( A (,] +oo ) ) -> E. x e. RR* ( A (,] +oo ) = ( x (,] +oo ) ) |
| 17 | 14 16 | mpan2 | |- ( A e. RR* -> E. x e. RR* ( A (,] +oo ) = ( x (,] +oo ) ) |
| 18 | eqid | |- ( x e. RR* |-> ( x (,] +oo ) ) = ( x e. RR* |-> ( x (,] +oo ) ) |
|
| 19 | ovex | |- ( x (,] +oo ) e. _V |
|
| 20 | 18 19 | elrnmpti | |- ( ( A (,] +oo ) e. ran ( x e. RR* |-> ( x (,] +oo ) ) <-> E. x e. RR* ( A (,] +oo ) = ( x (,] +oo ) ) |
| 21 | 17 20 | sylibr | |- ( A e. RR* -> ( A (,] +oo ) e. ran ( x e. RR* |-> ( x (,] +oo ) ) ) |
| 22 | 13 21 | sselid | |- ( A e. RR* -> ( A (,] +oo ) e. ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) ) |
| 23 | 12 22 | sselid | |- ( A e. RR* -> ( A (,] +oo ) e. ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) |
| 24 | 11 23 | sselid | |- ( A e. RR* -> ( A (,] +oo ) e. ( ordTop ` <_ ) ) |
| 25 | 24 | adantr | |- ( ( A e. RR* /\ +oo e. RR* ) -> ( A (,] +oo ) e. ( ordTop ` <_ ) ) |
| 26 | df-ioc | |- (,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z <_ y ) } ) |
|
| 27 | 26 | ixxf | |- (,] : ( RR* X. RR* ) --> ~P RR* |
| 28 | 27 | fdmi | |- dom (,] = ( RR* X. RR* ) |
| 29 | 28 | ndmov | |- ( -. ( A e. RR* /\ +oo e. RR* ) -> ( A (,] +oo ) = (/) ) |
| 30 | 0opn | |- ( ( ordTop ` <_ ) e. Top -> (/) e. ( ordTop ` <_ ) ) |
|
| 31 | 5 30 | ax-mp | |- (/) e. ( ordTop ` <_ ) |
| 32 | 29 31 | eqeltrdi | |- ( -. ( A e. RR* /\ +oo e. RR* ) -> ( A (,] +oo ) e. ( ordTop ` <_ ) ) |
| 33 | 25 32 | pm2.61i | |- ( A (,] +oo ) e. ( ordTop ` <_ ) |