This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icoshft | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. ( A [,) B ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 2 | elico2 | |- ( ( A e. RR /\ B e. RR* ) -> ( X e. ( A [,) B ) <-> ( X e. RR /\ A <_ X /\ X < B ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,) B ) <-> ( X e. RR /\ A <_ X /\ X < B ) ) ) |
| 4 | 3 | biimpd | |- ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,) B ) -> ( X e. RR /\ A <_ X /\ X < B ) ) ) |
| 5 | 4 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. ( A [,) B ) -> ( X e. RR /\ A <_ X /\ X < B ) ) ) |
| 6 | 3anass | |- ( ( X e. RR /\ A <_ X /\ X < B ) <-> ( X e. RR /\ ( A <_ X /\ X < B ) ) ) |
|
| 7 | 5 6 | imbitrdi | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. ( A [,) B ) -> ( X e. RR /\ ( A <_ X /\ X < B ) ) ) ) |
| 8 | leadd1 | |- ( ( A e. RR /\ X e. RR /\ C e. RR ) -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) |
|
| 9 | 8 | 3com12 | |- ( ( X e. RR /\ A e. RR /\ C e. RR ) -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) |
| 10 | 9 | 3expib | |- ( X e. RR -> ( ( A e. RR /\ C e. RR ) -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) ) |
| 11 | 10 | com12 | |- ( ( A e. RR /\ C e. RR ) -> ( X e. RR -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) ) |
| 12 | 11 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. RR -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) ) |
| 13 | 12 | imp | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ X e. RR ) -> ( A <_ X <-> ( A + C ) <_ ( X + C ) ) ) |
| 14 | ltadd1 | |- ( ( X e. RR /\ B e. RR /\ C e. RR ) -> ( X < B <-> ( X + C ) < ( B + C ) ) ) |
|
| 15 | 14 | 3expib | |- ( X e. RR -> ( ( B e. RR /\ C e. RR ) -> ( X < B <-> ( X + C ) < ( B + C ) ) ) ) |
| 16 | 15 | com12 | |- ( ( B e. RR /\ C e. RR ) -> ( X e. RR -> ( X < B <-> ( X + C ) < ( B + C ) ) ) ) |
| 17 | 16 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. RR -> ( X < B <-> ( X + C ) < ( B + C ) ) ) ) |
| 18 | 17 | imp | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ X e. RR ) -> ( X < B <-> ( X + C ) < ( B + C ) ) ) |
| 19 | 13 18 | anbi12d | |- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ X e. RR ) -> ( ( A <_ X /\ X < B ) <-> ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) |
| 20 | 19 | pm5.32da | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( X e. RR /\ ( A <_ X /\ X < B ) ) <-> ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) ) |
| 21 | readdcl | |- ( ( X e. RR /\ C e. RR ) -> ( X + C ) e. RR ) |
|
| 22 | 21 | expcom | |- ( C e. RR -> ( X e. RR -> ( X + C ) e. RR ) ) |
| 23 | 22 | anim1d | |- ( C e. RR -> ( ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) -> ( ( X + C ) e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) ) |
| 24 | 3anass | |- ( ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) <-> ( ( X + C ) e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) |
|
| 25 | 23 24 | imbitrrdi | |- ( C e. RR -> ( ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) -> ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) |
| 26 | 25 | 3ad2ant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) -> ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) |
| 27 | readdcl | |- ( ( A e. RR /\ C e. RR ) -> ( A + C ) e. RR ) |
|
| 28 | 27 | 3adant2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + C ) e. RR ) |
| 29 | readdcl | |- ( ( B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
|
| 30 | 29 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B + C ) e. RR ) |
| 31 | rexr | |- ( ( B + C ) e. RR -> ( B + C ) e. RR* ) |
|
| 32 | elico2 | |- ( ( ( A + C ) e. RR /\ ( B + C ) e. RR* ) -> ( ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) <-> ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) |
|
| 33 | 31 32 | sylan2 | |- ( ( ( A + C ) e. RR /\ ( B + C ) e. RR ) -> ( ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) <-> ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) ) |
| 34 | 33 | biimprd | |- ( ( ( A + C ) e. RR /\ ( B + C ) e. RR ) -> ( ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) |
| 35 | 28 30 34 | syl2anc | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( X + C ) e. RR /\ ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) |
| 36 | 26 35 | syld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( X e. RR /\ ( ( A + C ) <_ ( X + C ) /\ ( X + C ) < ( B + C ) ) ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) |
| 37 | 20 36 | sylbid | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( X e. RR /\ ( A <_ X /\ X < B ) ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) |
| 38 | 7 37 | syld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( X e. ( A [,) B ) -> ( X + C ) e. ( ( A + C ) [,) ( B + C ) ) ) ) |