This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication commutative law. (Contributed by NM, 19-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvmulcom | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( A .h ( B .h C ) ) = ( B .h ( A .h C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
|
| 2 | 1 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) .h C ) = ( ( B x. A ) .h C ) ) |
| 3 | 2 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A x. B ) .h C ) = ( ( B x. A ) .h C ) ) |
| 4 | ax-hvmulass | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A x. B ) .h C ) = ( A .h ( B .h C ) ) ) |
|
| 5 | ax-hvmulass | |- ( ( B e. CC /\ A e. CC /\ C e. ~H ) -> ( ( B x. A ) .h C ) = ( B .h ( A .h C ) ) ) |
|
| 6 | 5 | 3com12 | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( B x. A ) .h C ) = ( B .h ( A .h C ) ) ) |
| 7 | 3 4 6 | 3eqtr3d | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( A .h ( B .h C ) ) = ( B .h ( A .h C ) ) ) |