This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relation for supremum of Hilbert space subsets. (Contributed by NM, 24-Nov-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hsupss | |- ( ( A C_ ~P ~H /\ B C_ ~P ~H ) -> ( A C_ B -> ( \/H ` A ) C_ ( \/H ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniss | |- ( A C_ B -> U. A C_ U. B ) |
|
| 2 | sspwuni | |- ( A C_ ~P ~H <-> U. A C_ ~H ) |
|
| 3 | sspwuni | |- ( B C_ ~P ~H <-> U. B C_ ~H ) |
|
| 4 | occon2 | |- ( ( U. A C_ ~H /\ U. B C_ ~H ) -> ( U. A C_ U. B -> ( _|_ ` ( _|_ ` U. A ) ) C_ ( _|_ ` ( _|_ ` U. B ) ) ) ) |
|
| 5 | 2 3 4 | syl2anb | |- ( ( A C_ ~P ~H /\ B C_ ~P ~H ) -> ( U. A C_ U. B -> ( _|_ ` ( _|_ ` U. A ) ) C_ ( _|_ ` ( _|_ ` U. B ) ) ) ) |
| 6 | 1 5 | syl5 | |- ( ( A C_ ~P ~H /\ B C_ ~P ~H ) -> ( A C_ B -> ( _|_ ` ( _|_ ` U. A ) ) C_ ( _|_ ` ( _|_ ` U. B ) ) ) ) |
| 7 | hsupval | |- ( A C_ ~P ~H -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) ) |
|
| 8 | 7 | adantr | |- ( ( A C_ ~P ~H /\ B C_ ~P ~H ) -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) ) |
| 9 | hsupval | |- ( B C_ ~P ~H -> ( \/H ` B ) = ( _|_ ` ( _|_ ` U. B ) ) ) |
|
| 10 | 9 | adantl | |- ( ( A C_ ~P ~H /\ B C_ ~P ~H ) -> ( \/H ` B ) = ( _|_ ` ( _|_ ` U. B ) ) ) |
| 11 | 8 10 | sseq12d | |- ( ( A C_ ~P ~H /\ B C_ ~P ~H ) -> ( ( \/H ` A ) C_ ( \/H ` B ) <-> ( _|_ ` ( _|_ ` U. A ) ) C_ ( _|_ ` ( _|_ ` U. B ) ) ) ) |
| 12 | 6 11 | sylibrd | |- ( ( A C_ ~P ~H /\ B C_ ~P ~H ) -> ( A C_ B -> ( \/H ` A ) C_ ( \/H ` B ) ) ) |