This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relation for supremum of Hilbert space subsets. (Contributed by NM, 24-Nov-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hsupss | ⊢ ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( 𝐴 ⊆ 𝐵 → ( ∨ℋ ‘ 𝐴 ) ⊆ ( ∨ℋ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniss | ⊢ ( 𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵 ) | |
| 2 | sspwuni | ⊢ ( 𝐴 ⊆ 𝒫 ℋ ↔ ∪ 𝐴 ⊆ ℋ ) | |
| 3 | sspwuni | ⊢ ( 𝐵 ⊆ 𝒫 ℋ ↔ ∪ 𝐵 ⊆ ℋ ) | |
| 4 | occon2 | ⊢ ( ( ∪ 𝐴 ⊆ ℋ ∧ ∪ 𝐵 ⊆ ℋ ) → ( ∪ 𝐴 ⊆ ∪ 𝐵 → ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐵 ) ) ) ) | |
| 5 | 2 3 4 | syl2anb | ⊢ ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( ∪ 𝐴 ⊆ ∪ 𝐵 → ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐵 ) ) ) ) |
| 6 | 1 5 | syl5 | ⊢ ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( 𝐴 ⊆ 𝐵 → ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐵 ) ) ) ) |
| 7 | hsupval | ⊢ ( 𝐴 ⊆ 𝒫 ℋ → ( ∨ℋ ‘ 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐴 ) ) ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( ∨ℋ ‘ 𝐴 ) = ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐴 ) ) ) |
| 9 | hsupval | ⊢ ( 𝐵 ⊆ 𝒫 ℋ → ( ∨ℋ ‘ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐵 ) ) ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( ∨ℋ ‘ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐵 ) ) ) |
| 11 | 8 10 | sseq12d | ⊢ ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( ( ∨ℋ ‘ 𝐴 ) ⊆ ( ∨ℋ ‘ 𝐵 ) ↔ ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ∪ 𝐵 ) ) ) ) |
| 12 | 6 11 | sylibrd | ⊢ ( ( 𝐴 ⊆ 𝒫 ℋ ∧ 𝐵 ⊆ 𝒫 ℋ ) → ( 𝐴 ⊆ 𝐵 → ( ∨ℋ ‘ 𝐴 ) ⊆ ( ∨ℋ ‘ 𝐵 ) ) ) |