This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the sum of two Hilbert space operators. (Contributed by NM, 9-Nov-2000) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hosmval | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | |- ~H e. _V |
|
| 2 | 1 1 | elmap | |- ( S e. ( ~H ^m ~H ) <-> S : ~H --> ~H ) |
| 3 | 1 1 | elmap | |- ( T e. ( ~H ^m ~H ) <-> T : ~H --> ~H ) |
| 4 | fveq1 | |- ( f = S -> ( f ` x ) = ( S ` x ) ) |
|
| 5 | 4 | oveq1d | |- ( f = S -> ( ( f ` x ) +h ( g ` x ) ) = ( ( S ` x ) +h ( g ` x ) ) ) |
| 6 | 5 | mpteq2dv | |- ( f = S -> ( x e. ~H |-> ( ( f ` x ) +h ( g ` x ) ) ) = ( x e. ~H |-> ( ( S ` x ) +h ( g ` x ) ) ) ) |
| 7 | fveq1 | |- ( g = T -> ( g ` x ) = ( T ` x ) ) |
|
| 8 | 7 | oveq2d | |- ( g = T -> ( ( S ` x ) +h ( g ` x ) ) = ( ( S ` x ) +h ( T ` x ) ) ) |
| 9 | 8 | mpteq2dv | |- ( g = T -> ( x e. ~H |-> ( ( S ` x ) +h ( g ` x ) ) ) = ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) ) |
| 10 | df-hosum | |- +op = ( f e. ( ~H ^m ~H ) , g e. ( ~H ^m ~H ) |-> ( x e. ~H |-> ( ( f ` x ) +h ( g ` x ) ) ) ) |
|
| 11 | 1 | mptex | |- ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) e. _V |
| 12 | 6 9 10 11 | ovmpo | |- ( ( S e. ( ~H ^m ~H ) /\ T e. ( ~H ^m ~H ) ) -> ( S +op T ) = ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) ) |
| 13 | 2 3 12 | syl2anbr | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( x e. ~H |-> ( ( S ` x ) +h ( T ` x ) ) ) ) |