This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hommval | |- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) = ( x e. ~H |-> ( A .h ( T ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | |- ~H e. _V |
|
| 2 | 1 1 | elmap | |- ( T e. ( ~H ^m ~H ) <-> T : ~H --> ~H ) |
| 3 | oveq1 | |- ( f = A -> ( f .h ( g ` x ) ) = ( A .h ( g ` x ) ) ) |
|
| 4 | 3 | mpteq2dv | |- ( f = A -> ( x e. ~H |-> ( f .h ( g ` x ) ) ) = ( x e. ~H |-> ( A .h ( g ` x ) ) ) ) |
| 5 | fveq1 | |- ( g = T -> ( g ` x ) = ( T ` x ) ) |
|
| 6 | 5 | oveq2d | |- ( g = T -> ( A .h ( g ` x ) ) = ( A .h ( T ` x ) ) ) |
| 7 | 6 | mpteq2dv | |- ( g = T -> ( x e. ~H |-> ( A .h ( g ` x ) ) ) = ( x e. ~H |-> ( A .h ( T ` x ) ) ) ) |
| 8 | df-homul | |- .op = ( f e. CC , g e. ( ~H ^m ~H ) |-> ( x e. ~H |-> ( f .h ( g ` x ) ) ) ) |
|
| 9 | 1 | mptex | |- ( x e. ~H |-> ( A .h ( T ` x ) ) ) e. _V |
| 10 | 4 7 8 9 | ovmpo | |- ( ( A e. CC /\ T e. ( ~H ^m ~H ) ) -> ( A .op T ) = ( x e. ~H |-> ( A .h ( T ` x ) ) ) ) |
| 11 | 2 10 | sylan2br | |- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) = ( x e. ~H |-> ( A .h ( T ` x ) ) ) ) |