This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same Hom slot, they have the same Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homfeqd.1 | |- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
|
| homfeqd.2 | |- ( ph -> ( Hom ` C ) = ( Hom ` D ) ) |
||
| Assertion | homfeqd | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homfeqd.1 | |- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
|
| 2 | homfeqd.2 | |- ( ph -> ( Hom ` C ) = ( Hom ` D ) ) |
|
| 3 | 2 | oveqd | |- ( ph -> ( x ( Hom ` C ) y ) = ( x ( Hom ` D ) y ) ) |
| 4 | 3 | ralrimivw | |- ( ph -> A. y e. ( Base ` C ) ( x ( Hom ` C ) y ) = ( x ( Hom ` D ) y ) ) |
| 5 | 4 | ralrimivw | |- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( Hom ` C ) y ) = ( x ( Hom ` D ) y ) ) |
| 6 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 7 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 8 | eqidd | |- ( ph -> ( Base ` C ) = ( Base ` C ) ) |
|
| 9 | 6 7 8 1 | homfeq | |- ( ph -> ( ( Homf ` C ) = ( Homf ` D ) <-> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( Hom ` C ) y ) = ( x ( Hom ` D ) y ) ) ) |
| 10 | 5 9 | mpbird | |- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |