This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the scalar product of a Hilbert space operator. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | homcl | |- ( ( A e. CC /\ T : ~H --> ~H /\ B e. ~H ) -> ( ( A .op T ) ` B ) e. ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homval | |- ( ( A e. CC /\ T : ~H --> ~H /\ B e. ~H ) -> ( ( A .op T ) ` B ) = ( A .h ( T ` B ) ) ) |
|
| 2 | ffvelcdm | |- ( ( T : ~H --> ~H /\ B e. ~H ) -> ( T ` B ) e. ~H ) |
|
| 3 | 2 | anim2i | |- ( ( A e. CC /\ ( T : ~H --> ~H /\ B e. ~H ) ) -> ( A e. CC /\ ( T ` B ) e. ~H ) ) |
| 4 | 3 | 3impb | |- ( ( A e. CC /\ T : ~H --> ~H /\ B e. ~H ) -> ( A e. CC /\ ( T ` B ) e. ~H ) ) |
| 5 | hvmulcl | |- ( ( A e. CC /\ ( T ` B ) e. ~H ) -> ( A .h ( T ` B ) ) e. ~H ) |
|
| 6 | 4 5 | syl | |- ( ( A e. CC /\ T : ~H --> ~H /\ B e. ~H ) -> ( A .h ( T ` B ) ) e. ~H ) |
| 7 | 1 6 | eqeltrd | |- ( ( A e. CC /\ T : ~H --> ~H /\ B e. ~H ) -> ( ( A .op T ) ` B ) e. ~H ) |