This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the difference of two Hilbert space operators. (Contributed by NM, 15-Nov-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hodcl | |- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S -op T ) ` A ) e. ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hodval | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S -op T ) ` A ) = ( ( S ` A ) -h ( T ` A ) ) ) |
|
| 2 | ffvelcdm | |- ( ( S : ~H --> ~H /\ A e. ~H ) -> ( S ` A ) e. ~H ) |
|
| 3 | 2 | 3adant2 | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( S ` A ) e. ~H ) |
| 4 | ffvelcdm | |- ( ( T : ~H --> ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
|
| 5 | 4 | 3adant1 | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
| 6 | hvsubcl | |- ( ( ( S ` A ) e. ~H /\ ( T ` A ) e. ~H ) -> ( ( S ` A ) -h ( T ` A ) ) e. ~H ) |
|
| 7 | 3 5 6 | syl2anc | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S ` A ) -h ( T ` A ) ) e. ~H ) |
| 8 | 1 7 | eqeltrd | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ A e. ~H ) -> ( ( S -op T ) ` A ) e. ~H ) |
| 9 | 8 | 3expa | |- ( ( ( S : ~H --> ~H /\ T : ~H --> ~H ) /\ A e. ~H ) -> ( ( S -op T ) ` A ) e. ~H ) |