This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose an arrow into domain, codomain, and morphism. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | homahom.h | |- H = ( HomA ` C ) |
|
| Assertion | homadmcd | |- ( F e. ( X H Y ) -> F = <. X , Y , ( 2nd ` F ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homahom.h | |- H = ( HomA ` C ) |
|
| 2 | 1 | homarel | |- Rel ( X H Y ) |
| 3 | 1st2nd | |- ( ( Rel ( X H Y ) /\ F e. ( X H Y ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
|
| 4 | 2 3 | mpan | |- ( F e. ( X H Y ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 5 | 1st2ndbr | |- ( ( Rel ( X H Y ) /\ F e. ( X H Y ) ) -> ( 1st ` F ) ( X H Y ) ( 2nd ` F ) ) |
|
| 6 | 2 5 | mpan | |- ( F e. ( X H Y ) -> ( 1st ` F ) ( X H Y ) ( 2nd ` F ) ) |
| 7 | 1 | homa1 | |- ( ( 1st ` F ) ( X H Y ) ( 2nd ` F ) -> ( 1st ` F ) = <. X , Y >. ) |
| 8 | 6 7 | syl | |- ( F e. ( X H Y ) -> ( 1st ` F ) = <. X , Y >. ) |
| 9 | 8 | opeq1d | |- ( F e. ( X H Y ) -> <. ( 1st ` F ) , ( 2nd ` F ) >. = <. <. X , Y >. , ( 2nd ` F ) >. ) |
| 10 | 4 9 | eqtrd | |- ( F e. ( X H Y ) -> F = <. <. X , Y >. , ( 2nd ` F ) >. ) |
| 11 | df-ot | |- <. X , Y , ( 2nd ` F ) >. = <. <. X , Y >. , ( 2nd ` F ) >. |
|
| 12 | 10 11 | eqtr4di | |- ( F e. ( X H Y ) -> F = <. X , Y , ( 2nd ` F ) >. ) |