This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmeocnvb | |- ( Rel F -> ( `' F e. ( J Homeo K ) <-> F e. ( K Homeo J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocnv | |- ( `' F e. ( J Homeo K ) -> `' `' F e. ( K Homeo J ) ) |
|
| 2 | dfrel2 | |- ( Rel F <-> `' `' F = F ) |
|
| 3 | eleq1 | |- ( `' `' F = F -> ( `' `' F e. ( K Homeo J ) <-> F e. ( K Homeo J ) ) ) |
|
| 4 | 2 3 | sylbi | |- ( Rel F -> ( `' `' F e. ( K Homeo J ) <-> F e. ( K Homeo J ) ) ) |
| 5 | 1 4 | imbitrid | |- ( Rel F -> ( `' F e. ( J Homeo K ) -> F e. ( K Homeo J ) ) ) |
| 6 | hmeocnv | |- ( F e. ( K Homeo J ) -> `' F e. ( J Homeo K ) ) |
|
| 7 | 5 6 | impbid1 | |- ( Rel F -> ( `' F e. ( J Homeo K ) <-> F e. ( K Homeo J ) ) ) |