This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All variables are effectively bound in an identical variable specifier. Version of hbae using ax-c11 . (Contributed by NM, 13-May-1993) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hbae-o | |- ( A. x x = y -> A. z A. x x = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c5 | |- ( A. x x = y -> x = y ) |
|
| 2 | ax-c9 | |- ( -. A. z z = x -> ( -. A. z z = y -> ( x = y -> A. z x = y ) ) ) |
|
| 3 | 1 2 | syl7 | |- ( -. A. z z = x -> ( -. A. z z = y -> ( A. x x = y -> A. z x = y ) ) ) |
| 4 | ax-c11 | |- ( A. x x = z -> ( A. x x = y -> A. z x = y ) ) |
|
| 5 | 4 | aecoms-o | |- ( A. z z = x -> ( A. x x = y -> A. z x = y ) ) |
| 6 | ax-c11 | |- ( A. x x = y -> ( A. x x = y -> A. y x = y ) ) |
|
| 7 | 6 | pm2.43i | |- ( A. x x = y -> A. y x = y ) |
| 8 | ax-c11 | |- ( A. y y = z -> ( A. y x = y -> A. z x = y ) ) |
|
| 9 | 7 8 | syl5 | |- ( A. y y = z -> ( A. x x = y -> A. z x = y ) ) |
| 10 | 9 | aecoms-o | |- ( A. z z = y -> ( A. x x = y -> A. z x = y ) ) |
| 11 | 3 5 10 | pm2.61ii | |- ( A. x x = y -> A. z x = y ) |
| 12 | 11 | axc4i-o | |- ( A. x x = y -> A. x A. z x = y ) |
| 13 | ax-11 | |- ( A. x A. z x = y -> A. z A. x x = y ) |
|
| 14 | 12 13 | syl | |- ( A. x x = y -> A. z A. x x = y ) |