This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All variables are effectively bound in an identical variable specifier. Version of hbae using ax-c11 . (Contributed by NM, 13-May-1993) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hbae-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ∀ 𝑥 𝑥 = 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c5 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 2 | ax-c9 | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) | |
| 3 | 1 2 | syl7 | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) ) |
| 4 | ax-c11 | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) | |
| 5 | 4 | aecoms-o | ⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 6 | ax-c11 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑥 = 𝑦 ) ) | |
| 7 | 6 | pm2.43i | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑥 = 𝑦 ) |
| 8 | ax-c11 | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑦 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) | |
| 9 | 7 8 | syl5 | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 10 | 9 | aecoms-o | ⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) |
| 11 | 3 5 10 | pm2.61ii | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) |
| 12 | 11 | axc4i-o | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ∀ 𝑧 𝑥 = 𝑦 ) |
| 13 | ax-11 | ⊢ ( ∀ 𝑥 ∀ 𝑧 𝑥 = 𝑦 → ∀ 𝑧 ∀ 𝑥 𝑥 = 𝑦 ) | |
| 14 | 12 13 | syl | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ∀ 𝑥 𝑥 = 𝑦 ) |