This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker hbaev when possible. (Contributed by NM, 13-May-1993) (Proof shortened by Wolf Lammen, 21-Apr-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hbae | |- ( A. x x = y -> A. z A. x x = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp | |- ( A. x x = y -> x = y ) |
|
| 2 | axc9 | |- ( -. A. z z = x -> ( -. A. z z = y -> ( x = y -> A. z x = y ) ) ) |
|
| 3 | 1 2 | syl7 | |- ( -. A. z z = x -> ( -. A. z z = y -> ( A. x x = y -> A. z x = y ) ) ) |
| 4 | axc11r | |- ( A. z z = x -> ( A. x x = y -> A. z x = y ) ) |
|
| 5 | axc11 | |- ( A. x x = y -> ( A. x x = y -> A. y x = y ) ) |
|
| 6 | 5 | pm2.43i | |- ( A. x x = y -> A. y x = y ) |
| 7 | axc11r | |- ( A. z z = y -> ( A. y x = y -> A. z x = y ) ) |
|
| 8 | 6 7 | syl5 | |- ( A. z z = y -> ( A. x x = y -> A. z x = y ) ) |
| 9 | 3 4 8 | pm2.61ii | |- ( A. x x = y -> A. z x = y ) |
| 10 | 9 | axc4i | |- ( A. x x = y -> A. x A. z x = y ) |
| 11 | ax-11 | |- ( A. x A. z x = y -> A. z A. x x = y ) |
|
| 12 | 10 11 | syl | |- ( A. x x = y -> A. z A. x x = y ) |