This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of Megill p. 448 (p. 16 of preprint). Version of dral1 using ax-c11 . (Contributed by NM, 24-Nov-1994) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dral1-o.1 | |- ( A. x x = y -> ( ph <-> ps ) ) |
|
| Assertion | dral1-o | |- ( A. x x = y -> ( A. x ph <-> A. y ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dral1-o.1 | |- ( A. x x = y -> ( ph <-> ps ) ) |
|
| 2 | hbae-o | |- ( A. x x = y -> A. x A. x x = y ) |
|
| 3 | 1 | biimpd | |- ( A. x x = y -> ( ph -> ps ) ) |
| 4 | 2 3 | alimdh | |- ( A. x x = y -> ( A. x ph -> A. x ps ) ) |
| 5 | ax-c11 | |- ( A. x x = y -> ( A. x ps -> A. y ps ) ) |
|
| 6 | 4 5 | syld | |- ( A. x x = y -> ( A. x ph -> A. y ps ) ) |
| 7 | hbae-o | |- ( A. x x = y -> A. y A. x x = y ) |
|
| 8 | 1 | biimprd | |- ( A. x x = y -> ( ps -> ph ) ) |
| 9 | 7 8 | alimdh | |- ( A. x x = y -> ( A. y ps -> A. y ph ) ) |
| 10 | ax-c11 | |- ( A. y y = x -> ( A. y ph -> A. x ph ) ) |
|
| 11 | 10 | aecoms-o | |- ( A. x x = y -> ( A. y ph -> A. x ph ) ) |
| 12 | 9 11 | syld | |- ( A. x x = y -> ( A. y ps -> A. x ph ) ) |
| 13 | 6 12 | impbid | |- ( A. x x = y -> ( A. x ph <-> A. y ps ) ) |