This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the size of a set is not a nonnegative integer, it is greater than or equal to any nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashnnn0genn0 | |- ( ( M e. V /\ ( # ` M ) e/ NN0 /\ N e. NN0 ) -> N <_ ( # ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | |- ( ( # ` M ) e/ NN0 <-> -. ( # ` M ) e. NN0 ) |
|
| 2 | pm2.21 | |- ( -. ( # ` M ) e. NN0 -> ( ( # ` M ) e. NN0 -> N <_ ( # ` M ) ) ) |
|
| 3 | 1 2 | sylbi | |- ( ( # ` M ) e/ NN0 -> ( ( # ` M ) e. NN0 -> N <_ ( # ` M ) ) ) |
| 4 | 3 | 3ad2ant2 | |- ( ( M e. V /\ ( # ` M ) e/ NN0 /\ N e. NN0 ) -> ( ( # ` M ) e. NN0 -> N <_ ( # ` M ) ) ) |
| 5 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 6 | 5 | ltpnfd | |- ( N e. NN0 -> N < +oo ) |
| 7 | 5 | rexrd | |- ( N e. NN0 -> N e. RR* ) |
| 8 | pnfxr | |- +oo e. RR* |
|
| 9 | xrltle | |- ( ( N e. RR* /\ +oo e. RR* ) -> ( N < +oo -> N <_ +oo ) ) |
|
| 10 | 7 8 9 | sylancl | |- ( N e. NN0 -> ( N < +oo -> N <_ +oo ) ) |
| 11 | 6 10 | mpd | |- ( N e. NN0 -> N <_ +oo ) |
| 12 | breq2 | |- ( ( # ` M ) = +oo -> ( N <_ ( # ` M ) <-> N <_ +oo ) ) |
|
| 13 | 11 12 | syl5ibrcom | |- ( N e. NN0 -> ( ( # ` M ) = +oo -> N <_ ( # ` M ) ) ) |
| 14 | 13 | 3ad2ant3 | |- ( ( M e. V /\ ( # ` M ) e/ NN0 /\ N e. NN0 ) -> ( ( # ` M ) = +oo -> N <_ ( # ` M ) ) ) |
| 15 | hashnn0pnf | |- ( M e. V -> ( ( # ` M ) e. NN0 \/ ( # ` M ) = +oo ) ) |
|
| 16 | 15 | 3ad2ant1 | |- ( ( M e. V /\ ( # ` M ) e/ NN0 /\ N e. NN0 ) -> ( ( # ` M ) e. NN0 \/ ( # ` M ) = +oo ) ) |
| 17 | 4 14 16 | mpjaod | |- ( ( M e. V /\ ( # ` M ) e/ NN0 /\ N e. NN0 ) -> N <_ ( # ` M ) ) |