This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the size of a set is less than or equal to zero, the set must be empty. (Contributed by Alexander van der Vekens, 6-Jan-2018) (Proof shortened by AV, 24-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashle00 | |- ( V e. W -> ( ( # ` V ) <_ 0 <-> V = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashge0 | |- ( V e. W -> 0 <_ ( # ` V ) ) |
|
| 2 | 1 | biantrud | |- ( V e. W -> ( ( # ` V ) <_ 0 <-> ( ( # ` V ) <_ 0 /\ 0 <_ ( # ` V ) ) ) ) |
| 3 | hashxrcl | |- ( V e. W -> ( # ` V ) e. RR* ) |
|
| 4 | 0xr | |- 0 e. RR* |
|
| 5 | xrletri3 | |- ( ( ( # ` V ) e. RR* /\ 0 e. RR* ) -> ( ( # ` V ) = 0 <-> ( ( # ` V ) <_ 0 /\ 0 <_ ( # ` V ) ) ) ) |
|
| 6 | 3 4 5 | sylancl | |- ( V e. W -> ( ( # ` V ) = 0 <-> ( ( # ` V ) <_ 0 /\ 0 <_ ( # ` V ) ) ) ) |
| 7 | hasheq0 | |- ( V e. W -> ( ( # ` V ) = 0 <-> V = (/) ) ) |
|
| 8 | 2 6 7 | 3bitr2d | |- ( V e. W -> ( ( # ` V ) <_ 0 <-> V = (/) ) ) |