This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a set function is equal to the size of its domain. (Contributed by BTernaryTau, 30-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashfundm | |- ( ( F e. V /\ Fun F ) -> ( # ` F ) = ( # ` dom F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashfun | |- ( F e. Fin -> ( Fun F <-> ( # ` F ) = ( # ` dom F ) ) ) |
|
| 2 | 1 | biimpd | |- ( F e. Fin -> ( Fun F -> ( # ` F ) = ( # ` dom F ) ) ) |
| 3 | 2 | adantld | |- ( F e. Fin -> ( ( F e. V /\ Fun F ) -> ( # ` F ) = ( # ` dom F ) ) ) |
| 4 | hashinf | |- ( ( F e. V /\ -. F e. Fin ) -> ( # ` F ) = +oo ) |
|
| 5 | 4 | 3adant2 | |- ( ( F e. V /\ Fun F /\ -. F e. Fin ) -> ( # ` F ) = +oo ) |
| 6 | fundmfibi | |- ( Fun F -> ( F e. Fin <-> dom F e. Fin ) ) |
|
| 7 | 6 | notbid | |- ( Fun F -> ( -. F e. Fin <-> -. dom F e. Fin ) ) |
| 8 | 7 | adantl | |- ( ( F e. V /\ Fun F ) -> ( -. F e. Fin <-> -. dom F e. Fin ) ) |
| 9 | dmexg | |- ( F e. V -> dom F e. _V ) |
|
| 10 | hashinf | |- ( ( dom F e. _V /\ -. dom F e. Fin ) -> ( # ` dom F ) = +oo ) |
|
| 11 | 9 10 | sylan | |- ( ( F e. V /\ -. dom F e. Fin ) -> ( # ` dom F ) = +oo ) |
| 12 | 11 | ex | |- ( F e. V -> ( -. dom F e. Fin -> ( # ` dom F ) = +oo ) ) |
| 13 | 12 | adantr | |- ( ( F e. V /\ Fun F ) -> ( -. dom F e. Fin -> ( # ` dom F ) = +oo ) ) |
| 14 | 8 13 | sylbid | |- ( ( F e. V /\ Fun F ) -> ( -. F e. Fin -> ( # ` dom F ) = +oo ) ) |
| 15 | 14 | 3impia | |- ( ( F e. V /\ Fun F /\ -. F e. Fin ) -> ( # ` dom F ) = +oo ) |
| 16 | 5 15 | eqtr4d | |- ( ( F e. V /\ Fun F /\ -. F e. Fin ) -> ( # ` F ) = ( # ` dom F ) ) |
| 17 | 16 | 3comr | |- ( ( -. F e. Fin /\ F e. V /\ Fun F ) -> ( # ` F ) = ( # ` dom F ) ) |
| 18 | 17 | 3expib | |- ( -. F e. Fin -> ( ( F e. V /\ Fun F ) -> ( # ` F ) = ( # ` dom F ) ) ) |
| 19 | 3 18 | pm2.61i | |- ( ( F e. V /\ Fun F ) -> ( # ` F ) = ( # ` dom F ) ) |