This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a set function is equal to the size of its domain. (Contributed by BTernaryTau, 30-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashfundm | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ dom 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashfun | ⊢ ( 𝐹 ∈ Fin → ( Fun 𝐹 ↔ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ dom 𝐹 ) ) ) | |
| 2 | 1 | biimpd | ⊢ ( 𝐹 ∈ Fin → ( Fun 𝐹 → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ dom 𝐹 ) ) ) |
| 3 | 2 | adantld | ⊢ ( 𝐹 ∈ Fin → ( ( 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ dom 𝐹 ) ) ) |
| 4 | hashinf | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ ¬ 𝐹 ∈ Fin ) → ( ♯ ‘ 𝐹 ) = +∞ ) | |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ∧ ¬ 𝐹 ∈ Fin ) → ( ♯ ‘ 𝐹 ) = +∞ ) |
| 6 | fundmfibi | ⊢ ( Fun 𝐹 → ( 𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin ) ) | |
| 7 | 6 | notbid | ⊢ ( Fun 𝐹 → ( ¬ 𝐹 ∈ Fin ↔ ¬ dom 𝐹 ∈ Fin ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( ¬ 𝐹 ∈ Fin ↔ ¬ dom 𝐹 ∈ Fin ) ) |
| 9 | dmexg | ⊢ ( 𝐹 ∈ 𝑉 → dom 𝐹 ∈ V ) | |
| 10 | hashinf | ⊢ ( ( dom 𝐹 ∈ V ∧ ¬ dom 𝐹 ∈ Fin ) → ( ♯ ‘ dom 𝐹 ) = +∞ ) | |
| 11 | 9 10 | sylan | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ ¬ dom 𝐹 ∈ Fin ) → ( ♯ ‘ dom 𝐹 ) = +∞ ) |
| 12 | 11 | ex | ⊢ ( 𝐹 ∈ 𝑉 → ( ¬ dom 𝐹 ∈ Fin → ( ♯ ‘ dom 𝐹 ) = +∞ ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( ¬ dom 𝐹 ∈ Fin → ( ♯ ‘ dom 𝐹 ) = +∞ ) ) |
| 14 | 8 13 | sylbid | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( ¬ 𝐹 ∈ Fin → ( ♯ ‘ dom 𝐹 ) = +∞ ) ) |
| 15 | 14 | 3impia | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ∧ ¬ 𝐹 ∈ Fin ) → ( ♯ ‘ dom 𝐹 ) = +∞ ) |
| 16 | 5 15 | eqtr4d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ∧ ¬ 𝐹 ∈ Fin ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ dom 𝐹 ) ) |
| 17 | 16 | 3comr | ⊢ ( ( ¬ 𝐹 ∈ Fin ∧ 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ dom 𝐹 ) ) |
| 18 | 17 | 3expib | ⊢ ( ¬ 𝐹 ∈ Fin → ( ( 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ dom 𝐹 ) ) ) |
| 19 | 3 18 | pm2.61i | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ Fun 𝐹 ) → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ dom 𝐹 ) ) |