This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the domain of a one-to-one set function is equal to the size of its range. (Contributed by BTernaryTau, 1-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashf1dmrn | |- ( ( F e. V /\ F : A -1-1-> B ) -> ( # ` A ) = ( # ` ran F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fun | |- ( F : A -1-1-> B -> Fun F ) |
|
| 2 | hashfundm | |- ( ( F e. V /\ Fun F ) -> ( # ` F ) = ( # ` dom F ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( F e. V /\ F : A -1-1-> B ) -> ( # ` F ) = ( # ` dom F ) ) |
| 4 | f1dm | |- ( F : A -1-1-> B -> dom F = A ) |
|
| 5 | 4 | adantl | |- ( ( F e. V /\ F : A -1-1-> B ) -> dom F = A ) |
| 6 | dmexg | |- ( F e. V -> dom F e. _V ) |
|
| 7 | 6 | adantr | |- ( ( F e. V /\ F : A -1-1-> B ) -> dom F e. _V ) |
| 8 | 5 7 | eqeltrrd | |- ( ( F e. V /\ F : A -1-1-> B ) -> A e. _V ) |
| 9 | hashf1rn | |- ( ( A e. _V /\ F : A -1-1-> B ) -> ( # ` F ) = ( # ` ran F ) ) |
|
| 10 | 8 9 | sylancom | |- ( ( F e. V /\ F : A -1-1-> B ) -> ( # ` F ) = ( # ` ran F ) ) |
| 11 | 5 | fveq2d | |- ( ( F e. V /\ F : A -1-1-> B ) -> ( # ` dom F ) = ( # ` A ) ) |
| 12 | 3 10 11 | 3eqtr3rd | |- ( ( F e. V /\ F : A -1-1-> B ) -> ( # ` A ) = ( # ` ran F ) ) |