This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of the Hartogs function. (Contributed by Stefan O'Rear, 14-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harword | |- ( X ~<_ Y -> ( har ` X ) C_ ( har ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domtr | |- ( ( y ~<_ X /\ X ~<_ Y ) -> y ~<_ Y ) |
|
| 2 | 1 | expcom | |- ( X ~<_ Y -> ( y ~<_ X -> y ~<_ Y ) ) |
| 3 | 2 | adantr | |- ( ( X ~<_ Y /\ y e. On ) -> ( y ~<_ X -> y ~<_ Y ) ) |
| 4 | 3 | ss2rabdv | |- ( X ~<_ Y -> { y e. On | y ~<_ X } C_ { y e. On | y ~<_ Y } ) |
| 5 | reldom | |- Rel ~<_ |
|
| 6 | 5 | brrelex1i | |- ( X ~<_ Y -> X e. _V ) |
| 7 | harval | |- ( X e. _V -> ( har ` X ) = { y e. On | y ~<_ X } ) |
|
| 8 | 6 7 | syl | |- ( X ~<_ Y -> ( har ` X ) = { y e. On | y ~<_ X } ) |
| 9 | 5 | brrelex2i | |- ( X ~<_ Y -> Y e. _V ) |
| 10 | harval | |- ( Y e. _V -> ( har ` Y ) = { y e. On | y ~<_ Y } ) |
|
| 11 | 9 10 | syl | |- ( X ~<_ Y -> ( har ` Y ) = { y e. On | y ~<_ Y } ) |
| 12 | 4 8 11 | 3sstr4d | |- ( X ~<_ Y -> ( har ` X ) C_ ( har ` Y ) ) |