This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of the Hartogs function. (Contributed by Stefan O'Rear, 14-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harword | ⊢ ( 𝑋 ≼ 𝑌 → ( har ‘ 𝑋 ) ⊆ ( har ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domtr | ⊢ ( ( 𝑦 ≼ 𝑋 ∧ 𝑋 ≼ 𝑌 ) → 𝑦 ≼ 𝑌 ) | |
| 2 | 1 | expcom | ⊢ ( 𝑋 ≼ 𝑌 → ( 𝑦 ≼ 𝑋 → 𝑦 ≼ 𝑌 ) ) |
| 3 | 2 | adantr | ⊢ ( ( 𝑋 ≼ 𝑌 ∧ 𝑦 ∈ On ) → ( 𝑦 ≼ 𝑋 → 𝑦 ≼ 𝑌 ) ) |
| 4 | 3 | ss2rabdv | ⊢ ( 𝑋 ≼ 𝑌 → { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑋 } ⊆ { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑌 } ) |
| 5 | reldom | ⊢ Rel ≼ | |
| 6 | 5 | brrelex1i | ⊢ ( 𝑋 ≼ 𝑌 → 𝑋 ∈ V ) |
| 7 | harval | ⊢ ( 𝑋 ∈ V → ( har ‘ 𝑋 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑋 } ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑋 ≼ 𝑌 → ( har ‘ 𝑋 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑋 } ) |
| 9 | 5 | brrelex2i | ⊢ ( 𝑋 ≼ 𝑌 → 𝑌 ∈ V ) |
| 10 | harval | ⊢ ( 𝑌 ∈ V → ( har ‘ 𝑌 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑌 } ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑋 ≼ 𝑌 → ( har ‘ 𝑌 ) = { 𝑦 ∈ On ∣ 𝑦 ≼ 𝑌 } ) |
| 12 | 4 8 11 | 3sstr4d | ⊢ ( 𝑋 ≼ 𝑌 → ( har ‘ 𝑋 ) ⊆ ( har ‘ 𝑌 ) ) |