This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group sum operation when every element being summed is an identity of G . (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumval1.b | |- B = ( Base ` G ) |
|
| gsumval1.z | |- .0. = ( 0g ` G ) |
||
| gsumval1.p | |- .+ = ( +g ` G ) |
||
| gsumval1.o | |- O = { x e. B | A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) } |
||
| gsumval1.g | |- ( ph -> G e. V ) |
||
| gsumval1.a | |- ( ph -> A e. W ) |
||
| gsumval1.f | |- ( ph -> F : A --> O ) |
||
| Assertion | gsumval1 | |- ( ph -> ( G gsum F ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval1.b | |- B = ( Base ` G ) |
|
| 2 | gsumval1.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsumval1.p | |- .+ = ( +g ` G ) |
|
| 4 | gsumval1.o | |- O = { x e. B | A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) } |
|
| 5 | gsumval1.g | |- ( ph -> G e. V ) |
|
| 6 | gsumval1.a | |- ( ph -> A e. W ) |
|
| 7 | gsumval1.f | |- ( ph -> F : A --> O ) |
|
| 8 | eqidd | |- ( ph -> ( `' F " ( _V \ O ) ) = ( `' F " ( _V \ O ) ) ) |
|
| 9 | 4 | ssrab3 | |- O C_ B |
| 10 | fss | |- ( ( F : A --> O /\ O C_ B ) -> F : A --> B ) |
|
| 11 | 7 9 10 | sylancl | |- ( ph -> F : A --> B ) |
| 12 | 1 2 3 4 8 5 6 11 | gsumval | |- ( ph -> ( G gsum F ) = if ( ran F C_ O , .0. , if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ O ) ) ) ) -1-1-onto-> ( `' F " ( _V \ O ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ O ) ) ) ) ) ) ) ) ) |
| 13 | frn | |- ( F : A --> O -> ran F C_ O ) |
|
| 14 | iftrue | |- ( ran F C_ O -> if ( ran F C_ O , .0. , if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ O ) ) ) ) -1-1-onto-> ( `' F " ( _V \ O ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ O ) ) ) ) ) ) ) ) = .0. ) |
|
| 15 | 7 13 14 | 3syl | |- ( ph -> if ( ran F C_ O , .0. , if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ O ) ) ) ) -1-1-onto-> ( `' F " ( _V \ O ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ O ) ) ) ) ) ) ) ) = .0. ) |
| 16 | 12 15 | eqtrd | |- ( ph -> ( G gsum F ) = .0. ) |