This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a group sum in a non-commutative monoid. (Contributed by Thierry Arnoux, 8-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumncl.k | |- K = ( Base ` M ) |
|
| gsumncl.w | |- ( ph -> M e. Mnd ) |
||
| gsumncl.p | |- ( ph -> P e. ( ZZ>= ` N ) ) |
||
| gsumncl.b | |- ( ( ph /\ k e. ( N ... P ) ) -> B e. K ) |
||
| gsumnunsn.a | |- .+ = ( +g ` M ) |
||
| gsumnunsn.l | |- ( ph -> C e. K ) |
||
| gsumnunsn.c | |- ( ( ph /\ k = ( P + 1 ) ) -> B = C ) |
||
| Assertion | gsumnunsn | |- ( ph -> ( M gsum ( k e. ( N ... ( P + 1 ) ) |-> B ) ) = ( ( M gsum ( k e. ( N ... P ) |-> B ) ) .+ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumncl.k | |- K = ( Base ` M ) |
|
| 2 | gsumncl.w | |- ( ph -> M e. Mnd ) |
|
| 3 | gsumncl.p | |- ( ph -> P e. ( ZZ>= ` N ) ) |
|
| 4 | gsumncl.b | |- ( ( ph /\ k e. ( N ... P ) ) -> B e. K ) |
|
| 5 | gsumnunsn.a | |- .+ = ( +g ` M ) |
|
| 6 | gsumnunsn.l | |- ( ph -> C e. K ) |
|
| 7 | gsumnunsn.c | |- ( ( ph /\ k = ( P + 1 ) ) -> B = C ) |
|
| 8 | seqp1 | |- ( P e. ( ZZ>= ` N ) -> ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` ( P + 1 ) ) = ( ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) .+ ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) ) ) |
|
| 9 | 3 8 | syl | |- ( ph -> ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` ( P + 1 ) ) = ( ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) .+ ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) ) ) |
| 10 | peano2uz | |- ( P e. ( ZZ>= ` N ) -> ( P + 1 ) e. ( ZZ>= ` N ) ) |
|
| 11 | 3 10 | syl | |- ( ph -> ( P + 1 ) e. ( ZZ>= ` N ) ) |
| 12 | 4 | adantlr | |- ( ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) /\ k e. ( N ... P ) ) -> B e. K ) |
| 13 | 7 | adantlr | |- ( ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) /\ k = ( P + 1 ) ) -> B = C ) |
| 14 | 6 | ad2antrr | |- ( ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) /\ k = ( P + 1 ) ) -> C e. K ) |
| 15 | 13 14 | eqeltrd | |- ( ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) /\ k = ( P + 1 ) ) -> B e. K ) |
| 16 | elfzp1 | |- ( P e. ( ZZ>= ` N ) -> ( k e. ( N ... ( P + 1 ) ) <-> ( k e. ( N ... P ) \/ k = ( P + 1 ) ) ) ) |
|
| 17 | 3 16 | syl | |- ( ph -> ( k e. ( N ... ( P + 1 ) ) <-> ( k e. ( N ... P ) \/ k = ( P + 1 ) ) ) ) |
| 18 | 17 | biimpa | |- ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) -> ( k e. ( N ... P ) \/ k = ( P + 1 ) ) ) |
| 19 | 12 15 18 | mpjaodan | |- ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) -> B e. K ) |
| 20 | 19 | fmpttd | |- ( ph -> ( k e. ( N ... ( P + 1 ) ) |-> B ) : ( N ... ( P + 1 ) ) --> K ) |
| 21 | 1 5 2 11 20 | gsumval2 | |- ( ph -> ( M gsum ( k e. ( N ... ( P + 1 ) ) |-> B ) ) = ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` ( P + 1 ) ) ) |
| 22 | 4 | fmpttd | |- ( ph -> ( k e. ( N ... P ) |-> B ) : ( N ... P ) --> K ) |
| 23 | 1 5 2 3 22 | gsumval2 | |- ( ph -> ( M gsum ( k e. ( N ... P ) |-> B ) ) = ( seq N ( .+ , ( k e. ( N ... P ) |-> B ) ) ` P ) ) |
| 24 | fvres | |- ( i e. ( N ... P ) -> ( ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) ` i ) = ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` i ) ) |
|
| 25 | 24 | adantl | |- ( ( ph /\ i e. ( N ... P ) ) -> ( ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) ` i ) = ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` i ) ) |
| 26 | fzssp1 | |- ( N ... P ) C_ ( N ... ( P + 1 ) ) |
|
| 27 | resmpt | |- ( ( N ... P ) C_ ( N ... ( P + 1 ) ) -> ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) = ( k e. ( N ... P ) |-> B ) ) |
|
| 28 | 26 27 | ax-mp | |- ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) = ( k e. ( N ... P ) |-> B ) |
| 29 | 28 | fveq1i | |- ( ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) ` i ) = ( ( k e. ( N ... P ) |-> B ) ` i ) |
| 30 | 25 29 | eqtr3di | |- ( ( ph /\ i e. ( N ... P ) ) -> ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` i ) = ( ( k e. ( N ... P ) |-> B ) ` i ) ) |
| 31 | 3 30 | seqfveq | |- ( ph -> ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) = ( seq N ( .+ , ( k e. ( N ... P ) |-> B ) ) ` P ) ) |
| 32 | 23 31 | eqtr4d | |- ( ph -> ( M gsum ( k e. ( N ... P ) |-> B ) ) = ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) ) |
| 33 | eqidd | |- ( ph -> ( k e. ( N ... ( P + 1 ) ) |-> B ) = ( k e. ( N ... ( P + 1 ) ) |-> B ) ) |
|
| 34 | eluzfz2 | |- ( ( P + 1 ) e. ( ZZ>= ` N ) -> ( P + 1 ) e. ( N ... ( P + 1 ) ) ) |
|
| 35 | 11 34 | syl | |- ( ph -> ( P + 1 ) e. ( N ... ( P + 1 ) ) ) |
| 36 | 33 7 35 6 | fvmptd | |- ( ph -> ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) = C ) |
| 37 | 36 | eqcomd | |- ( ph -> C = ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) ) |
| 38 | 32 37 | oveq12d | |- ( ph -> ( ( M gsum ( k e. ( N ... P ) |-> B ) ) .+ C ) = ( ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) .+ ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) ) ) |
| 39 | 9 21 38 | 3eqtr4d | |- ( ph -> ( M gsum ( k e. ( N ... ( P + 1 ) ) |-> B ) ) = ( ( M gsum ( k e. ( N ... P ) |-> B ) ) .+ C ) ) |