This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of gsummulc2 as of 7-Mar-2025. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 10-Jul-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummulc1OLD.b | |- B = ( Base ` R ) |
|
| gsummulc1OLD.z | |- .0. = ( 0g ` R ) |
||
| gsummulc1OLD.p | |- .+ = ( +g ` R ) |
||
| gsummulc1OLD.t | |- .x. = ( .r ` R ) |
||
| gsummulc1OLD.r | |- ( ph -> R e. Ring ) |
||
| gsummulc1OLD.a | |- ( ph -> A e. V ) |
||
| gsummulc1OLD.y | |- ( ph -> Y e. B ) |
||
| gsummulc1OLD.x | |- ( ( ph /\ k e. A ) -> X e. B ) |
||
| gsummulc1OLD.n | |- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
||
| Assertion | gsummulc2OLD | |- ( ph -> ( R gsum ( k e. A |-> ( Y .x. X ) ) ) = ( Y .x. ( R gsum ( k e. A |-> X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummulc1OLD.b | |- B = ( Base ` R ) |
|
| 2 | gsummulc1OLD.z | |- .0. = ( 0g ` R ) |
|
| 3 | gsummulc1OLD.p | |- .+ = ( +g ` R ) |
|
| 4 | gsummulc1OLD.t | |- .x. = ( .r ` R ) |
|
| 5 | gsummulc1OLD.r | |- ( ph -> R e. Ring ) |
|
| 6 | gsummulc1OLD.a | |- ( ph -> A e. V ) |
|
| 7 | gsummulc1OLD.y | |- ( ph -> Y e. B ) |
|
| 8 | gsummulc1OLD.x | |- ( ( ph /\ k e. A ) -> X e. B ) |
|
| 9 | gsummulc1OLD.n | |- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
|
| 10 | ringcmn | |- ( R e. Ring -> R e. CMnd ) |
|
| 11 | 5 10 | syl | |- ( ph -> R e. CMnd ) |
| 12 | ringmnd | |- ( R e. Ring -> R e. Mnd ) |
|
| 13 | 5 12 | syl | |- ( ph -> R e. Mnd ) |
| 14 | 1 4 | ringlghm | |- ( ( R e. Ring /\ Y e. B ) -> ( x e. B |-> ( Y .x. x ) ) e. ( R GrpHom R ) ) |
| 15 | 5 7 14 | syl2anc | |- ( ph -> ( x e. B |-> ( Y .x. x ) ) e. ( R GrpHom R ) ) |
| 16 | ghmmhm | |- ( ( x e. B |-> ( Y .x. x ) ) e. ( R GrpHom R ) -> ( x e. B |-> ( Y .x. x ) ) e. ( R MndHom R ) ) |
|
| 17 | 15 16 | syl | |- ( ph -> ( x e. B |-> ( Y .x. x ) ) e. ( R MndHom R ) ) |
| 18 | oveq2 | |- ( x = X -> ( Y .x. x ) = ( Y .x. X ) ) |
|
| 19 | oveq2 | |- ( x = ( R gsum ( k e. A |-> X ) ) -> ( Y .x. x ) = ( Y .x. ( R gsum ( k e. A |-> X ) ) ) ) |
|
| 20 | 1 2 11 13 6 17 8 9 18 19 | gsummhm2 | |- ( ph -> ( R gsum ( k e. A |-> ( Y .x. X ) ) ) = ( Y .x. ( R gsum ( k e. A |-> X ) ) ) ) |