This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptfidmadd.b | |- B = ( Base ` G ) |
|
| gsummptfidmadd.p | |- .+ = ( +g ` G ) |
||
| gsummptfidmadd.g | |- ( ph -> G e. CMnd ) |
||
| gsummptfidmadd.a | |- ( ph -> A e. Fin ) |
||
| gsummptfidmadd.c | |- ( ( ph /\ x e. A ) -> C e. B ) |
||
| gsummptfidmadd.d | |- ( ( ph /\ x e. A ) -> D e. B ) |
||
| gsummptfidmadd.f | |- F = ( x e. A |-> C ) |
||
| gsummptfidmadd.h | |- H = ( x e. A |-> D ) |
||
| Assertion | gsummptfidmadd | |- ( ph -> ( G gsum ( x e. A |-> ( C .+ D ) ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfidmadd.b | |- B = ( Base ` G ) |
|
| 2 | gsummptfidmadd.p | |- .+ = ( +g ` G ) |
|
| 3 | gsummptfidmadd.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsummptfidmadd.a | |- ( ph -> A e. Fin ) |
|
| 5 | gsummptfidmadd.c | |- ( ( ph /\ x e. A ) -> C e. B ) |
|
| 6 | gsummptfidmadd.d | |- ( ( ph /\ x e. A ) -> D e. B ) |
|
| 7 | gsummptfidmadd.f | |- F = ( x e. A |-> C ) |
|
| 8 | gsummptfidmadd.h | |- H = ( x e. A |-> D ) |
|
| 9 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 10 | 7 | a1i | |- ( ph -> F = ( x e. A |-> C ) ) |
| 11 | 8 | a1i | |- ( ph -> H = ( x e. A |-> D ) ) |
| 12 | fvexd | |- ( ph -> ( 0g ` G ) e. _V ) |
|
| 13 | 7 4 5 12 | fsuppmptdm | |- ( ph -> F finSupp ( 0g ` G ) ) |
| 14 | 8 4 6 12 | fsuppmptdm | |- ( ph -> H finSupp ( 0g ` G ) ) |
| 15 | 1 9 2 3 4 5 6 10 11 13 14 | gsummptfsadd | |- ( ph -> ( G gsum ( x e. A |-> ( C .+ D ) ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |