This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptfidmadd.b | |- B = ( Base ` G ) |
|
| gsummptfidmadd.p | |- .+ = ( +g ` G ) |
||
| gsummptfidmadd.g | |- ( ph -> G e. CMnd ) |
||
| gsummptfidmadd.a | |- ( ph -> A e. Fin ) |
||
| gsummptfidmadd.c | |- ( ( ph /\ x e. A ) -> C e. B ) |
||
| gsummptfidmadd.d | |- ( ( ph /\ x e. A ) -> D e. B ) |
||
| gsummptfidmadd.f | |- F = ( x e. A |-> C ) |
||
| gsummptfidmadd.h | |- H = ( x e. A |-> D ) |
||
| Assertion | gsummptfidmadd2 | |- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfidmadd.b | |- B = ( Base ` G ) |
|
| 2 | gsummptfidmadd.p | |- .+ = ( +g ` G ) |
|
| 3 | gsummptfidmadd.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsummptfidmadd.a | |- ( ph -> A e. Fin ) |
|
| 5 | gsummptfidmadd.c | |- ( ( ph /\ x e. A ) -> C e. B ) |
|
| 6 | gsummptfidmadd.d | |- ( ( ph /\ x e. A ) -> D e. B ) |
|
| 7 | gsummptfidmadd.f | |- F = ( x e. A |-> C ) |
|
| 8 | gsummptfidmadd.h | |- H = ( x e. A |-> D ) |
|
| 9 | 7 | a1i | |- ( ph -> F = ( x e. A |-> C ) ) |
| 10 | 8 | a1i | |- ( ph -> H = ( x e. A |-> D ) ) |
| 11 | 4 5 6 9 10 | offval2 | |- ( ph -> ( F oF .+ H ) = ( x e. A |-> ( C .+ D ) ) ) |
| 12 | 11 | oveq2d | |- ( ph -> ( G gsum ( F oF .+ H ) ) = ( G gsum ( x e. A |-> ( C .+ D ) ) ) ) |
| 13 | 1 2 3 4 5 6 7 8 | gsummptfidmadd | |- ( ph -> ( G gsum ( x e. A |-> ( C .+ D ) ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |
| 14 | 12 13 | eqtrd | |- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |